Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session and Happy Hour
  • Program
    • At a Glance
    • Technical Sessions
  • Sponsorship
  • Participate
    • Instructions for Participants
    • Call for Papers
    • Call for Posters
  • About
    • Organizers
    • Help Promote
    • Questions
    • Past Symposia
  • Home
  • Attend
  • Activities
  • Program
  • Sponsorship
  • Participate
  • About

sponsors

Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

help promote

NSDI '16 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Simplifying Software-Defined Network Optimization Using SOL
Tweet

connect with us

Simplifying Software-Defined Network Optimization Using SOL

Authors: 

Victor Heorhiadi and Michael K. Reiter, University of North Carolina at Chapel Hill; Vyas Sekar, Carnegie Mellon University

Abstract: 

Realizing the benefits of SDN for many network management applications (e.g., traffic engineering, service chaining, topology reconfiguration) involves addressing complex optimizations that are central to these problems. Unfortunately, such optimization problems require (a) significant manual effort and expertise to express and (b) non-trivial computation and/or carefully crafted heuristics to solve. Our goal is to simplify the deployment of SDN applications using general high-level abstractions for capturing optimization requirements from which we can efficiently generate optimal solutions. To this end, we present SOL, a framework that demonstrates that it is possible to simultaneously achieve generality and efficiency. The insight underlying SOL is that many SDN applications can be recast within a unifying path-based optimization abstraction. Using this, SOL can efficiently generate near-optimal solutions and device configurations to implement them. We show that SOL provides comparable or better scalability than custom optimization solutions for diverse applications, allows a balancing of optimality and route churn per reconfiguration, and interfaces with modern SDN controllers.

Victor Heorhiadi, University of North Carolina at Chapel Hill

Michael K. Reiter, University of North Carolina at Chapel Hill

Vyas Sekar, Carnegie Mellon University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {194930,
author = {Victor Heorhiadi and Michael K. Reiter and Vyas Sekar},
title = {Simplifying {Software-Defined} Network Optimization Using {SOL}},
booktitle = {13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16)},
year = {2016},
isbn = {978-1-931971-29-4},
address = {Santa Clara, CA},
pages = {223-237},
url = {https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/heorhiadi},
publisher = {USENIX Association},
month = mar,
}
Download
Heorhiadi PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us