Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • NSDI '12 Home
  • Registration Information
  • Discounts
  • Organizers
  • At a Glance
  • Technical Sessions
  • Poster and Demo Session
  • Birds-of-a-Feather Sessions
  • Workshops
  • Sponsors
  • Activities
  • Calendar
  • Hotel and Travel Information
  • Students
  • Questions?
  • Help Promote
  • For Participants
  • Call for Papers
  • Past Proceedings

sponsors

Gold Sponsor
Silver Sponsor
Silver Sponsor
Microsoft Research
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
LXer

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Jellyfish: Networking Data Centers Randomly
Tweet

connect with us

http://twitter.com/usenix
http://www.facebook.com/events/307418625975555/

Jellyfish: Networking Data Centers Randomly

Authors: 

Ankit Singla and Chi-Yao Hong, University of Illinois at Urbana-Champaign; Lucian Popa, HP Labs;  P. Brighten Godfrey, University of Illinois at Urbana-Champaign

Abstract: 

Industry experience indicates that the ability to incrementally expand data centers is essential. However, existing high-bandwidth network designs have rigid structure that interferes with incremental expansion. We present Jellyfish, a high-capacity network interconnect which, by adopting a random graph topology, yields itself naturally to incremental expansion. Somewhat surprisingly, Jellyfish is more cost-efficient than a fat-tree, supporting as many as 25% more servers at full capacity using the same equipment at the scale of a few thousand nodes, and this advantage improves with scale. Jellyfish also allows great flexibility in building networks with different degrees of oversubscription. However, Jellyfish’s unstructured design brings new challenges in routing, physical layout, and wiring. We describe approaches to resolve these challenges, and our evaluation suggests that Jellyfish could be deployed in today’s data centers.

 

Ankit Singla, University of Illinois at Urbana Champaign

Chi-Yao Hong, University of Illinois at Urbana-Champaign

Lucian Popa, HP Labs

P. Brighten Godfrey, University of Illinois at Urbana Champaign

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Singla PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Microsoft Research

Bronze Sponsors

Media Sponsors & Industry Partners

LXer

© USENIX

  • Privacy Policy
  • Contact Us