Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Program
    • At a Glance
    • Technical Sessions
    • Training Program
    • Poster Sessions
    • WiPs
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Participate
    • Call for Papers
    • Call for Posters and WiPs
    • Instructions for Participants
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote!
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

FAST '17 CFP

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » WiscKey: Separating Keys from Values in SSD-conscious Storage
Tweet

connect with us

WiscKey: Separating Keys from Values in SSD-conscious Storage

Authors: 

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Abstract: 

We present WiscKey, a persistent LSM-tree-based key-value store with a performance-oriented data layout that separates keys from values to minimize I/O amplification. The design of WiscKey is highly SSD optimized, leveraging both the sequential and random performance characteristics of the device. We demonstrate the advantages of WiscKey with both microbenchmarks and YCSB workloads. Microbenchmark results show that WiscKey is 2.5x–111x faster than LevelDB for loading a database and 1.6x–14x faster for random lookups. WiscKey is faster than both LevelDB and RocksDB in all six YCSB workloads.

Lanyue Lu, University of Wisconsin—Madison

Thanumalayan Sankaranarayana Pillai, University of Wisconsin—Madison

Andrea C. Arpaci-Dusseau, University of Wisconsin—Madison

Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Lu PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us