Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • FAST '13 Home
  • Organizers
  • Registration Information
  • Registration Discounts
  • At a Glance
  • Calendar
  • Training Program
  • Technical Sessions
  • Purchase the Box Set
  • Posters and WiPs
  • Birds-of-a-Feather Sessions
  • Sponsors
  • Activities
  • Hotel and Travel Information
  • Services
  • Students
  • Questions
  • Help Promote
  • For Participants
  • Call for Papers
  • Past Proceedings

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups?home=&gid=49559
http://www.youtube.com/user/USENIXAssociation

Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory

Authors: 

Eunji Lee and Hyokyung Bahn, Ewha University; Sam H. Noh, Hongik University
    Awarded Best Paper! 

Abstract: 

Journaling techniques are widely used in modern file systems as they provide high reliability and fast recovery from system failures. However, it reduces the performance benefit of buffer caching as journaling accounts for a bulk of the storage writes in real system environments. In this paper, we present a novel buffer cache architecture that subsumes the functionality of caching and journaling by making use of non-volatile memory such as PCM or STT-MRAM. Specifically, our buffer cache supports what we call the in-place commit scheme. This scheme avoids logging, but still provides the same journaling effect by simply altering the state of the cached block to frozen. As a frozen block still performs the function of caching, we show that in-place commit does not degrade cache performance. We implement our scheme on Linux 2.6.38 and measure the throughput and execution time of the scheme with various file I/O benchmarks. The results show that our scheme improves I/O performance by 76% on average and up to 240% compared to the existing Linux buffer cache with ext4 without any loss of reliability.

Eunji Lee, Ewha University

Hyokyung Bahn, Ewha University

Sam H. Noh, Hongik University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {180729,
author = {Eunji Lee and Hyokyung Bahn and Sam H. Noh},
title = {Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory},
booktitle = {11th {USENIX} Conference on File and Storage Technologies ({FAST} 13)},
year = {2013},
isbn = {978-1-931971-99-7},
address = {San Jose, CA},
pages = {73--80},
url = {https://www.usenix.org/conference/fast13/technical-sessions/presentation/lee},
publisher = {{USENIX} Association},
month = feb,
}
Download
Lee PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

Award: 
Best Paper
  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Conference Policies
  • Contact Us