Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated Key-Value Stores


Shin-Yeh Tsai, Purdue University; Yizhou Shan and Yiying Zhang, University of California, San Diego


Many datacenters and clouds manage storage systems separately from computing services for better manageability and resource utilization. These existing disaggregated storage systems use hard disks or SSDs as storage media. Recently, the technology of persistent memory (PM) has matured and seen initial adoption in several datacenters. Disaggregating PM could enjoy the same benefits of traditional disaggregated storage systems, but it requires new designs because of its memory-like performance and byte addressability.

In this paper, we explore the design of disaggregating PM and managing them remotely from compute servers, a model we call passive disaggregated persistent memory, or pDPM. Compared to the alternative of managing PM at storage servers, pDPM significantly lowers monetary and energy costs and avoids scalability bottlenecks at storage servers.

We built three key-value store systems using the pDPM model. The first one lets all compute nodes directly access and manage storage nodes. The second uses a central coordinator to orchestrate the communication between compute and storage nodes. These two systems have various performance and scalability limitations. To solve these problems, we built Clover, a pDPM system that separates the location, communication mechanism, and management strategy of the data plane and the metadata/control plane. Compute nodes access storage nodes directly for data operations, while one or few global metadata servers handle all metadata/control operations. From our extensive evaluation of the three pDPM systems, we found Clover to be the best-performing pDPM system. Its performance under common datacenter workloads is similar to non-pDPM remote in-memory key-value store, while reducing CapEx and OpEx by 1.4x and 3.9x.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {254441,
author = {Shin-Yeh Tsai and Yizhou Shan and Yiying Zhang},
title = {Disaggregating Persistent Memory and Controlling Them Remotely: An Exploration of Passive Disaggregated {Key-Value} Stores},
booktitle = {2020 USENIX Annual Technical Conference (USENIX ATC 20)},
year = {2020},
isbn = {978-1-939133-14-4},
pages = {33--48},
url = {https://www.usenix.org/conference/atc20/presentation/tsai},
publisher = {USENIX Association},
month = jul

Presentation Video