N
usenix N\
.' THE ADVANCED "
COMPUTING SYSTEMS

ASSOCIATION

Disaggregating Persistent Memory and
Controlling Them Remotely: An Exploration

of Passive Disaggregated Key-Value Stores

Shin-Yeh Tsai, Purdue University; Yizhou Shan and Yiying Zhang,
University of California, San Diego

https://www.usenix.org/conference/atc20/presentation/tsai

This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.
July 15-17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference
is sponsored by USENIX.

ar

Disaggregating Persistent Memory and Controlling Them Remotely:
An Exploration of Passive Disaggregated Key-Value Stores

Shin-Yeh Tsai, Yizhou Shan, Yiying Zhang
Purdue University and University of California, San Diego

Abstract

Many datacenters and clouds manage storage systems sepa-
rately from computing services for better manageability and
resource utilization. These existing disaggregated storage
systems use hard disks or SSDs as storage media. Recently,
the technology of persistent memory (PM) has matured and
seen initial adoption in several datacenters. Disaggregating
PM could enjoy the same benefits of traditional disaggre-
gated storage systems, but it requires new designs because
of its memory-like performance and byte addressability.

In this paper, we explore the design of disaggregating
PM and managing them remotely from compute servers, a
model we call passive disaggregated persistent memory, or
pDPM. Compared to the alternative of managing PM at stor-
age servers, pPDPM significantly lowers monetary and energy
costs and avoids scalability bottlenecks at storage servers.

We built three key-value store systems using the pDPM
model. The first one lets all compute nodes directly access
and manage storage nodes. The second uses a central coor-
dinator to orchestrate the communication between compute
and storage nodes. These two systems have various perfor-
mance and scalability limitations. To solve these problems,
we built Clover, a pDPM system that separates the location,
communication mechanism, and management strategy of the
data plane and the metadata/control plane. Compute nodes
access storage nodes directly for data operations, while one
or few global metadata servers handle all metadata/control
operations. From our extensive evaluation of the three pPDPM
systems, we found Clover to be the best-performing pDPM
system. Its performance under common datacenter work-
loads is similar to non-pDPM remote in-memory key-value
store, while reducing CapEx and OpEx by 1.4x and 3.9x.

1 Introduction

Separating (or “disaggregating”) storage and compute has
become a common practice in many datacenters [11, 18]
and clouds [3, 4]. Disaggregation makes it easy to manage
and scale both the storage and the compute pools. By al-
lowing the storage pool to be shared across applications and
users, disaggregation consolidates storage resources and re-
duces their cost. As a recent success story, Alibaba listed
their RDMA-based disaggregated storage system as one of
the five reasons that enabled them to serve the peak load of
544,000 orders per second on the 2019 Single’s Day [62].
Existing disaggregated storage systems are all SSD- or
HDD-based. Today, a new storage media, non-volatile mem-

ory (or persistent memory, PM) has arrived [27, 29] and has
already seen adoption in several datacenters [21, 25, 46]. Ex-
isting distributed PM systems [42, 56, 69] have mainly taken
a non-disaggregated approach, where each server in a cluster
hosts PM for applications running both on the local server
and remote servers (Figure 1(a)).

Disaggregating PM could enjoy the same management
and resource-utilization benefits as traditional disaggregated
storage systems. However, building a PM-based disaggre-
gated system is very different from traditional disaggregated
storage systems as PM is byte addressable and orders of
magnitude faster than SSDs and HDDs. It is also different
from disaggregated memory systems [41, 55], since when
treated as storage systems, disaggregated PM systems need
to sustain power failure and be crash consistent.

There are two possible design directions in building dis-
aggregated PM systems, and they differ in where manage-
ment software runs. The first type, and the type that has
been adopted in traditional disaggregated storage systems,
runs management software at the storage nodes, i.e., actively
managing data at where the data is. When applying this
model to PM, we call the resulting system active disaggre-
gated PM, or aDPM (Figure 1(b)). By co-locating data and
their management, aDPM could offer low-latency perfor-
mance to applications. However, aDPM requires significant
processing power at storage nodes to sustain high-bandwidth
networks and to fully deliver PM’s superior performance.

In this paper, we explore an alternative approach of build-
ing disaggregated PM by treating storage nodes as passive
parties that do not perform any data processing or data man-
agement tasks, a model we call pDPM. pDPM offers several
practical benefits and research value. First, pDPM lowers
owning and energy cost. Without any processing need, a PM
node (we call it a data node or DN) can either be a regular
server that dedicates its entire CPU to other applications or
a hardware device that directly attaches a NIC to PM. Sec-
ond, pDPM avoids DN’s processing power being the perfor-
mance scalability bottleneck. Finally, pDPM is an approach
in the design space of disaggregated storage systems that
has largely been overlooked in the past. Exploring pDPM
systems would reveal various performance, scalability, and
cost tradeoffs that could help future researchers and systems
builders make better design decisions.

pDPM presents several new challenges, the biggest of
which is the need to avoid processing all together from where
data is hosted. Existing in-memory data stores heavily rely

USENIX Association

2020 USENIX Annual Technical Conference 33

CN CN CN

Metadata

[CPU [CPU |...|[_CPU

| DRAM DRAM DRAM

(a) non-Disaggregated PM

Figure 1: PM Organization Comparison. Blue bars indicate two-way communication and pink ones indicate one-way communication. Bars with
both blue and pink mean support for both. Dashed boxes mean some but not all existing solutions adopt centralized metadata server (or a coordinator).

(b) aDPM

on local processing power for both the data path and the con-
trol path. Without any processing power, accesses to DNs
have to come all from the network, which makes data opera-
tions like concurrent writes especially hard. Moreover, DNs
cannot perform any management tasks or metadata opera-
tions locally, and each DN can fail independently.

A key question in designing pDPM systems is where to
perform data and metadata operations when we cannot per-
form them at DNs. Our first approach is to let client/com-
pute nodes (CNs) perform all the tasks by directly accessing
DNs with one-sided network communication, a model we
call pDPM-Direct (Figure 1(c)). After building and evaluat-
ing a real pDPM-Direct key-value store system, we found
that since CNs cannot be efficiently coordinated, pDPM-
Direct performs and scales poorly when there are concur-
rent reads/writes to the same data. Our second approach is
pDPM-Central (Figure 1(d)), where we use a central server
(the coordinator) to manage DNs and to orchestrate all ac-
cesses from CNs to DNs. Although pDPM-Central provides
a way to coordinate CNs, it adds more hops between CNs
and DN, and the coordinator is a new scalability bottleneck.

To solve the issues of the above two pDPM systems, we
build Clover, a key-value store system with a new architec-
ture of pDPM (Figure 1(e)). Clover’s main ideas are to sep-
arate the location of data and metadata, to use different com-
munication mechanisms to access them, and to adopt differ-
ent management strategies for them. Data is stored at DNs.
Metadata is stored at one or few global metadata servers
(MSs). CNs directly access DNs for all data operations us-
ing one-sided network communication. They use two-sided
communication to talk to MS(s). MS(s) perform all metadata
and control operations.

Clover achieves low-latency, high-throughput perfor-
mance while delivering the consistency and reliability guar-
antees that are commonly used in traditional distributed stor-
age systems. We designed a set of novel techniques at the
data and the metadata plane to achieve these goals. Our
data plane design is inspired by log-structured writes and
skip lists. This design achieves 1-/2-RTT read/write perfor-
mance when there is no high write contention, while ensur-
ing proper synchronization and crash consistency of concur-
rent writes with satisfactory performance. We move all meta-
data and control operations off performance critical path. We
completely eliminate the need for the MS to communicate

CN CN CN

[CPU |...| [_CPU [cPU
DRAM | DRAM |DRAM | "**
#={ Meta/Goord |
DN DN

CPU/SoC|"""| |CPU/SoC]|

CN
-| [CPU
[DRAM

5P
DRAM [H&\Y| | DRAM

DN DN DN

DN DN DN

(c) pDPM-Direct

(d) pDPM-Central (e) Clover

with DNs; it performs space management and other control
tasks without accessing DNs. In addition, Clover supports
replicated writes for high availability and reliability.

We evaluate Clover, pDPM-Direct, and pDPM-Central
using a cluster of servers connected with RDMA network
(some acting as CNs and MSs, some acting as emulated
DNs). We compare these pDPM systems with two non-
disaggregated PM systems [42, 56] and an aDPM key-value
store system [30] running on CPU-based servers and on
ARM-SoC-based RDMA SmartNIC [44]. We perform an
extensive set of experiments to study the latency, throughput,
scalability, CPU utilization, and owning cost of these sys-
tems using microbenchmarks and YCSB workloads [13, 71].
Our evaluation results demonstrate that Clover is the best-
performing pDPM system, and it significantly outperforms
traditional distributed PM systems. Clover achieves simi-
lar or better performance as aDPM systems under common
datacenter workloads, while reducing CapEx and OpEx by
1.4x and 3.9x. However, we also discovered a fundamen-
tal limitation of pDPM-based storage systems: no process-
ing at where data sits could hurt write performance, espe-
cially under high contention of concurrent accesses to the
same data entry. Fortunately, most datacenter workloads
are read-most [7]. Thus, we believe pDPM and Clover to
be good choices future systems builders can consider, given
their overall benefits in cost, performance, and scalability.

Overall, this paper makes the following contributions:

e Thorough exploration of the passive disaggregated
persistent-memory architecture, revealing its benefits,
tradeoffs, and pitfalls.

* Implementation of Clover and two alternative pDPM
key-value stores, all guaranteeing proper synchroniza-
tion, crash consistency, and high availability.

* A detailed design of how to separate the data plane and
the metadata plane under the pPDPM model.

» Comprehensive evaluation results that can guide future
DPM research.

All our pDPM systems are publicly available at https:/
github.com/WukLab/pDPM.

2 Background and Related Work

This section includes background and related work on in-
memory data stores, RDMA, and PM in datacenter settings.

34 2020 USENIX Annual Technical Conference

USENIX Association

https://github.com/WukLab/pDPM
https://github.com/WukLab/pDPM

2.1 PM and Distributed PM Storage

Non-volatile memory (or PM) technologies such as 3D-
XPoint [28], PCM, STTM, and the memristor provide byte
addressability, persistence, and latency that is within an order
of magnitude of DRAM [59, 70]. PM has attracted extensive
research efforts in the past decade, most of which focus on
single-node environments. The first commercial PM prod-
uct, Intel Optane DC, has finally come to market [27]. It is
pressing to seek solutions to incorporate PM in datacenters.

Existing distributed PM systems [42, 56, 69] have mainly
adopted a symmetric architecture where each node in a clus-
ter hosts some PM that can be accessed both locally and by
other nodes (Figure 1(a)). Some of these systems expose a
file system interface [42, 69], and others expose a memory
interface [56, 73]. Among them, Orion [69] uses a global
server for metadata, and the rest co-locate metadata with
data. These systems have fast local-data accesses but lack
flexibility in managing compute and storage resources, and
they cannot scale these resources independently.

2.2 RDMA and RDMA-Based Data Stores

Remote Direct Memory Access, or RDMA, is a network tech-
nology that offers low-latency and low-CPU-utilization ac-
cesses to memory at remote machines. RDMA supports two
communication patterns: one-sided and two-sided. One-
sided RDMA operations allow one node to directly ac-
cess the memory at another node without involving the lat-
ter’s CPU. Two-sided RDMA involves both sender’s and re-
ceiver’s CPUs, similar to traditional network messaging.
Because of its performance and cost benefits [22, 36, 49],
RDMA has been deployed in major datacenters like Mi-
crosoft [63] and Alibaba [2]. Several recent distributed sys-
tems such as in-memory key-value stores [15, 16, 38,47, 48,
58] and in-memory databases/transactional systems [8, 10,
66, 72] use RDMA to perform their network communica-
tion. Most of them use a combination of one- and two-sided
RDMA or pure two-sided RDMA. For example, FaSST [32]
is an RDMA-based RPC system built entirely with two-sided
RDMA. FaRM [15, 16], an RDMA-based distributed mem-
ory platform, uses one-sided communication for reads and
performs both one- and two-sided operations for replicated
writes. Pilaf [47] is a key-value store system that uses one-
sided RDMA read for get and two-sided RDMA for put.
HERD [30, 31] is another RDMA-based key-value store sys-
tem. For each get and put, HERD uses two RDMA oper-
ations: client sending a one-sided RDMA wrife request to
server and server sending an RDMA send response to client.
To achieve low-latency performance, most existing sys-
tems use busy-polling threads to receive incoming two-sided
RDMA requests. They also perform management tasks such
as memory allocation and garbage collection at CPUs in
data-hosting nodes [15, 72]. Consequently, even when one-
sided RDMA operations help reduce CPU utilization, practi-
cal RDMA-based data stores still require a CPU and signifi-

cant amount of energy at each data-hosting server. For exam-
ple, although FaRM [15] tries to use as much one-sided com-
munication as possible, it still requires processing power at
data nodes to perform metadata operations and certain steps
in its write replication protocol.

HyperLoop [35] is a recent system that provides a mech-
anism to extend default one-sided RDMA operations to sup-
port more functionalities. These additional functionalities
are performed at RDMA NICs without involving host CPU.
HyperLoop’s computation offloading technique could be ap-
plied to pDPM systems to offload certain data operations
to DNs, which could potentially improve pDPM’s perfor-
mance. However, it is difficult to offload the more complex
metadata operations to RDMA NICs, and HyperLoop still
performs them at CPUs. Clover demonstrates how to ef-
ficiently separate the metadata plane and run it at a global
metadata server.

2.3 Resource Disaggregation

Resource disaggregation is a notion to separate different
types of resources into pools (e.g., a compute pool and a
storage pool), each of which can be independently managed,
configured, and scaled [6, 26, 55]. Because of its efficiency
in resource utilization and management, many datacenters
and clouds have taken this approach when building storage
systems [3, 4, 11, 18, 65].

Disaggregation could take two forms: disaggregating re-
sources and managing them at where they are (active), and
disaggregating resources but managing them at the compute
pool (passive). Existing storage and memory systems have
mainly taken the active approach, with most of them build-
ing disaggregated resource pools using regular CPU-based
servers [51, 65]. To sustain high-bandwidth networks and
fast PM, these systems will require many CPU cores to just
poll and process requests. Another way to build active disag-
gregated systems is to offload computation at storage nodes
to hardware [9, 12, 17, 33, 35, 38, 39, 54, 57, 57]. These
solutions either require significant hardware implementation
efforts (e.g., FPGA-based) or incur performance scalability
issues (e.g., ARM-SoC-based).

Compared to active disaggregation, the passive approach
of disaggregation largely reduces the owning, energy, and
development costs of storage nodes by avoiding busy polling
at storage nodes and shifting the rest of the computation
to compute nodes. Unfortunately, the passive approach has
largely been overlooked in the community. HPE’s “The Ma-
chine” (Memory-Driven Computing) project [19, 23, 24, 37,
64] is one of the few existing proposals [40, 41] that adopt the
passive model. So far, HPE has (separately) built a hardware
prototype and a software layer. The hardware prototype [20]
connects a set of SoCs to a set of DRAM/PM chips in a rack
over a proprietary photonic network. To use this hardware
prototype, application developers need to build software lay-
ers to manage and access data in DRAM/PM. HPE has also

USENIX Association

2020 USENIX Annual Technical Conference 35

been building a software memory-store solution on top of a
Superdome NUMA machine [37, 64]. This solution assumes
certain features from future interconnect technologies, does
not support data redundancy, and is work done in parallel
with us. Although being a significant initial step in passive
disaggregation research, the Machine project only explores
one design choice and relies heavily on special network to
access and manage disaggregated memory. Moreover, its de-
sign details are not open to the public.

3 pDPM Overview

This section gives an overview of pDPM, its unique chal-
lenges, the interface and guarantees our proposed pDPM sys-
tems have, and the network layer they employ. Table | sum-
marizes the comparison of our proposed pDPM systems and
traditional distributed PM and remote memory systems.

3.1 Passive Disaggregated Persistent Memory

Our definition of the pDPM architecture consists of two con-
cepts: separating PM from compute servers into a PM-based
storage pool and eliminating processing needs at these sepa-
rated PM nodes (DNs).

The first concept is in the same spirit of current disaggre-
gated storage systems and shares many of their benefits: it
is flexible to manage and customize the PM storage pool; it
offers high resource utilization, since data can be allocated
at any DNs; datacenters can scale DNs independently from
other servers; and it is easy to add, remove, and upgrade DNs
without the need to change existing (compute) servers.

The second concept follows the more aggressive disag-
gregation approach of forming resource pools with just hard-
ware (PM in our case). Such PM pools can be a set of regular
servers equipped with PM or a set of network-attached de-
vices with just network functionality and some PM. The for-
mer frees entire server CPUs to perform other tasks, while
the latter eliminates the need for a processor and its hard-
ware/server packaging all together, reducing not only the en-
ergy cost but also the building cost of DNs. Moreover, by
removing processing from DNs, pDPM also avoids DN-side
processor being a performance scalability bottleneck.

3.2 pDPM Challenges

pDPM offers many cost and manageability benefits and is
now feasible to build with fast, “one-sided” network com-
munication technologies like RDMA. However, it is only at-
tractive when there is no or minimal performance loss com-
pared to other more expensive solutions. Building a pDPM
storage system that can lower the cost but maintain the per-
formance of non-pDPM systems is hard. Different from tra-
ditional distributed storage and memory systems, DNs can
only be accessed and managed remotely. A major techni-
cal hurdle is in providing good performance with concur-
rent data accesses. The lack of processing power at DNs
makes it impossible to orchestrate (e.g., serialize) concurrent

accesses there. Managing distributed PM resources without
any pDPM-local processing is also hard and when performed
improperly, can largely hurt foreground performance. In ad-
dition, DNs can fail independently. Such failures should be
handled properly to ensure data reliability and availability.

Different from traditional disaggregated storage that is
based on SSDs or hard disks, PM is orders of magnitude
faster [70]. Although today’s datacenter network speed has
also improved significantly [43], pDPM storage systems
should still try to minimize network RTTs.

Different from disaggregated memory systems [40, 41,
55], pDPM is a persistent storage system and should sustain
power failures and node failures. Thus, we need to ensure
the consistency of data and metadata during crash recovery
and provide redundancy for high availability and reliability.

3.3 System Interface and Guarantees

Clover and our two alternative pDPM systems provide the
same interface and guarantees to applications. They are key-
value stores supporting variable-sized entries, where users
can create, read (get), write (put), and delete a key-value
entry. Different CNs can have shared access to the same
data. All our pDPM systems ensure the atomicity of an entry
across concurrent readers and writers. A successful write in-
dicates that the data entry is committed (atomically). Reads
only see committed value. We choose to build key-value
stores on the pDPM architectures because key-value stores
are widely used in many datacenters. Similarly, we choose
single-entry atomic write and read committed because these
consistency and isolation levels are widely used in many data
store systems [30, 47] and can be extended to other levels.

Our pDPM systems are intended for storing data persis-
tently. They provide crash consistency, data reliability, and
high availability. After recovering from crashes at arbitrary
points, each data entry is guaranteed to contain either only
new data values or only old ones. In addition, all our three
systems support replicated writes across DNs.

3.4 Network Layer

We choose RDMA as the network technology to connect
all servers and DNs. We use RDMA’s RC (Reliable Con-
nection) mode which supports one-sided RDMA operations
and ensures lossless and ordered packet delivery. Similar to
prior solutions [15, 30, 31, 67], we solve RDMA’s scalabil-
ity issues by registering memory regions using huge memory
pages with RDMA NICs. Note that we use regular RDMA
writes as persistent write for our evaluation, since the RDMA
durable write commit in the IETF standard takes one network
round trip [60], same as non-durable RDMA write.

4 Alternative pDPM Systems

Before Clover, we built two other pDPM systems during
our exploration of the pDPM architectures. They follow the
same interface and deliver the same consistency and relia-

36 2020 USENIX Annual Technical Conference

USENIX Association

System CapEx ($) ‘ R-RTT | W-RTT | Energy | Scalability | Metadata | Performance

Distributed PM 46736 0-N 0-N High Neither Large Good only when accessing data on local node
aDPM w/ CPU 79888 1 1 High w/ bothx Small Good overall

aDPM w/ BlueField 80080 1 1 Low Neither Small Good under light load

pDPM-Direct 53096 1 4(4) Low w/ DNt Large Best for small-sized read

pDPM-Central 58096 2 2(2) High Neither Small Not good for read-intensive traffic

Clover 58096 1 2(3) Low w/ both Medium | Good overall (unless high write contention)

Table 1: Comparison of Distributed PM Architectures.

The CapEx column represents dollar cost to build eight CNs and eight PMs. Section 6

discusses the details of CapEx and energy (CPU utilization) calculation. The R-RTT and W-RTT columns show the number of RTTs required to perform a read
and a write (with replication). All RTT values are measured when there is no contention. RTTs in distributed PM’s read/write, N, depends on protocols and
whether data is local. The Scalability column shows if a system is scalable with the number of CNs, the number of DNs, both, or neither. x only when there are

enough CPU cores. T only scalable when there is no contention. The metadata columns show the space needed to store the metadata of a data entry.

read creite read write
Lock Re Jo umj e Unlock oN Create-
ON 7 Redo
g © Cor. = *
@\5© \&; o)
v Y :
@) pDPM-Direct (b) pDPM-Central
F 4 Back d O Old data
MS oregroun ackgrouns > —qi|
eate- Link- Und:.lm One-sided —> Compare & Swap B New data
n do_Redo | Shortcu —> RPC
oN \5 x’ \ \.‘ s c° (©) CRC calculation (D) Reader Lock @I Writer Lock
PM . Update Metadata
(c) Clover @ Unlock @ Update Shortcut @ P

Figure 2: Read/Write Protocols of pDPM Systems.

bility guarantees as Clover. Even though the main system
we present in this paper is Clover, we have spent significant
amount of efforts on optimizing the performance of these al-
ternative systems and on adding replication and crash recov-
ery support to them. They can be used as stand-alone sys-
tems apart from being comparison points of Clover. Because
of space constraint, we only briefly present their basic data
structures and read/write protocols. We omit the discussion
of their replication and crash recovery protocols.

4.1 Direct Connection

Our first alternative pDPM system, pDPM-Direct, connects
CNs directly to DNs (Figure 1(c)). CNs perform un-
orchestrated, direct accesses to DNs using one-sided RDMA
operations. The main challenge in designing pDPM-Direct is
the difficulty in coordinating CNs for various data and meta-
data operations.

To avoid frequent space allocation (which requires coordi-
nation across CNs), we pre-assign two spaces for each data
entry, one to store committed data where reads go to (the
committed space) and one to store in-flight, new data (the un-
committed space). CNs allocate these spaces at data-entry
creation time with the help of a distributed consensus pro-
tocol. Afterwards, their locations do not change until data-
entry free time. CNs locally store all the metadata (e.g., the
locations of committed and uncommitted spaces) to avoid
reading and writing metadata to DNs and the cost of ensur-
ing metadata consistency under concurrent accesses.

To support synchronized concurrent data accesses and to
avoid reading intermediate data during concurrent writes, a
straightforward method and our strawman version is to al-
ways lock a data entry when reading or writing it using a dis-

tributed lock. Doing so incurs two additional network RTTs
for each data access (one for lock and one for unlock).

For better performance, we adopt a lock-free, checksum-
based read mechanism, which allows reads to take only one
RTT. Specifically, we associate a CRC (error detection code)
checksum with each key-value entry at DNs. To read a data
entry, a CN uses its stored metadata to find the location of the
data entry’s committed space. It then reads both the data and
its CRC from the DN with an RDMA read. Afterwards, the
CN calculates the CRC of the fetched data and compares this
calculated CRC with the fetched CRC. If they do not match,
then the read is incomplete (an intermediate state during an
ongoing write), and the CN retries the read request. Al-
though calculating CRCs adds some performance overhead,
it is much lower than the alternative of locking. Figure 2(a)
illustrates pDPM-Direct’s read and write protocols.

pDPM-Direct still requires locking for writes. We de-
signed an efficient, RDMA-based implementation of write
lock. We associate an 8-byte value at the beginning of each
data entry as its lock value. To acquire the lock, a CN per-
forms an RDMA cé&s (compare-and-swap) operation to the
value. The c&s operation compares whether the value is 0.
If so, it sets it to 1. Otherwise, the CN retries the c&s oper-
ation. To release the lock, the CN performs an RDMA write
and sets the value to 0. Our lock implementation leverages
the unique feature of the pDPM model that all memory ac-
cesses to DNs come from the network (i.e., the NIC). With-
out any yprocessor’s accesses to memory, the DMA proto-
col guarantees that network atomic operations like c&s are
atomic across the entire DN [14, 61].

To write a data entry, a CN first calculates and attaches
a CRC to the new data entry. Afterwards, the CN locates
the entry with its local metadata and locks the entry (one
RTT). The CN then writes the new data (with the CRC) to
the un-committed space (one RTT), which serves as the redo
copy used during recovery if a crash happens. Afterwards,
the CN writes the new data to the committed space with an
RDMA write (one RTT). At the end, the CN releases the
lock (one RTT). The total write latency is four RTTs plus
the CRC calculation time (when no contention), and two of
these RTTs contain data.

USENIX Association

2020 USENIX Annual Technical Conference 37

4.2 Connecting Through Coordinator

Our second alternative pDPM system, pDPM-Central (Fig-
ure 1(c)), uses a central coordinator to orchestrate all data ac-
cesses and to perform metadata and management operations.
All CNs send RPC requests to the coordinator, which handles
them by performing one-sided RDMA operations to DNs.
We implement our RPC using HERD’s RPC design [30];
other RPC designs can easily be integrated too. To achieve
high throughput, we use multiple RPC handling threads at
the coordinator. Figure 2(b) illustrates pDPM-Central’s read
and write protocols.

Since all requests go through the coordinator, it can serve
as the serialization point for concurrent accesses to a data
entry. We use a local read/write lock for each data entry at
the coordinator to synchronize across multiple coordinator
threads. In addition to orchestrating data accesses, the co-
ordinator performs all space allocation and de-allocation of
data entries. The coordinator uses its local PM to persistently
store all the metadata of a data entry.

To perform a read, a CN sends an RPC read request to the
coordinator. The coordinator finds the location of the entry’s
committed data using its local metadata, acquires its local
lock of the entry, reads the data from the DN using a one-
sided RDMA read, releases its local lock, and finally replies
to the CN’s RPC request. The end-to-end read latency a CN
observes (when there is no contention) is two RTTs, and both
RTTs involve sending data.

To perform a write, the coordinator allocates a new space
at a DN for the new data and then writes the data there. We
do not need to lock (either at coordinator or at the DN) during
this write, since it is an out-of-place write to a location that
is not exposed to any other coordinator RPC handlers. After
the write, the coordinator updates its local metadata with the
new data’s location and flushes this new location to its lo-
cal PM for crash resistance. The total write latency without
contention is two RTTs, both containing data.

4.3 pDPM-Direct/-Central Drawbacks

pDPM-Direct delivers great read performance when read
size is small, since it only requires one lock-free RTT and
it is fast to calculate small CRC. Its write performance is
much worse because of high RTTs and lock contention. Its
scalability is also limited because of lock contention during
concurrent writes. Moreover, pDPM-Direct requires large
space for both data and metadata. For each data entry, it
doubles the space because of the need to store two copies of
data. The metadata overhead is also high, since all CNs have
to store all the metadata.

pDPM-Central largely reduces write RTTs over pDPM-
Direct and thus has good write performance when the scale
of the cluster is small. Unlike pDPM-Direct, CNs in pDPM-
Central do not need to store any metadata. However, from
our experiments, the coordinator soon becomes the perfor-
mance bottleneck when either the number of CNs or the

number of DNs increases. pDPM-Central’s read perfor-
mance is also worse than pDPM-Direct with the extra hop
between a CN and the coordinator. In addition, the coor-
dinator’s CPU utilization is high, since it needs many RPC
handler threads to sustain parallel requests from CNs.

5 Clover

To solve the problems of the first two pDPM systems we
built, we propose Clover (Figure 1(e)). The main idea
of Clover is to separate the location, the communication
method, and the management strategy of the data plane and
the control plane. It lets CNs directly access DNs for all data
operations and uses one or few metadata servers (MSs) for
all control plane operations.

To avoid MS being the scalability bottleneck, we support
multiple MSs, each serving a shard of data entries. Each MS
stores the metadata of the data entries it is in charge of in its
local PM. We keep the amount of metadata small. The stor-
age overhead of metadata is below 2% for 1 KB data entries.
CNs cache the metadata of hot data entries. Under memory
pressure, CNs evict metadata with a replacement policy (we
currently support FIFO and LRU).

Clover aims to deliver scalable, low-latency, high-
throughput performance at the data plane and to avoid the
MS being the bottleneck at the control plane. Our overall
approaches to achieve these design goals include: 1) mov-
ing all metadata operations off performance critical path, 2)
using lock-free data structures to increase scalability, 3) em-
ploying optimization mechanisms to reduce network round
trips for data accesses, and 4) leveraging the unique atomic
data access guarantees of pDPM. Figure 2(c) shows the read
and write protocol of Clover. Figure 3 illustrates the data
structures used in Clover.

5.1 Data Plane

To achieve our data plane design goals, we propose a new
mechanism to perform lock-free, fast, and scalable reads and
writes. Specifically, we allow multiple committed versions
of a data entry in DNs and link them into a chain. Each
committed write to a data entry will move its latest version
to a new location. To avoid the need of updating CNs with
the new location, we use a self-identifying data structure for
CNs to find the latest version.

We include a header with each version of a data entry.
The header contains a pointer and some metadata bits used
for garbage collection. The pointers chain all versions of a
data entry together in the order that they are written. A NULL
pointer indicates that the version is the latest.

A CN acquires the header of the chain head from the MS
at the first access to a data entry. It then caches the header
locally to avoid the overhead of contacting MS on every data
access. We call a CN-cached header a cursor.

Read. Clover reads are lock-free. To read a data entry, a CN
performs a chain walk. The chain walk begins with fetching

38 2020 USENIX Annual Technical Conference

USENIX Association

MS _ committed versions
| key = ‘oroutioe || | tai % shorteut
FreeList [F=[] < ptr
ToGCList [F=[] 5 l uncommitted
OvflowList [F—~{"] head version
7
’ =~

metadata cache , ~ .
read-cursor

next m DN
key => write-cursor ptr GC-‘{Ier

shortcut-loc

Figure 3: Clover System Design.

the data buffer version that the CN’s cursor points to. It then
uses the pointer in this fetched buffer to read the next version.
The CN repeats this step until reading a NULL pointer, which
indicates that it has read the latest version. All steps in the
chain walk use one-sided RDMA reads. After a chain walk,
the CN updates its cursor to point to the latest version.

A chain walk can be slow with long chains when a cursor
is not up to date [68]. Inspired by skip lists [53], we solve
this issue by using a shortcut to directly point to the latest
version or a recent version of each data entry. Shortcuts are
best effort in that they are intended but not enforced to al-
ways point to the latest version of an entry. The shortcut of
a data entry is stored at its DN. The location of a shortcut
never changes during the lifetime of the entry. MS stores the
locations of all shortcuts. When a CN first accesses a data
entry, it retrieves the location of its shortcut from MS and
caches it locally.

The CN issues a chain walk read and a shortcut read in par-
allel. It returns the user request when the faster one finishes
and discards the other result. We do not replace chain walks
completely with shortcut reads, since shortcuts are updated
asynchronously in the background and may not be updated
as fast as the cursor. When the CN’s cursor points to the
latest version of a data entry, a read only takes one RTT.
Write. Clover never overwrites existing data entries and per-
forms a lock-free, out-of-place write before linking the new
data to an entry’s chain. To write a data entry, a CN first
selects a free DN space assigned to it by MS in advance
(see §5.2). It performs a one-sided RDMA write to write
the new data to this buffer. Afterwards, the CN performs an
RDMA cé&s operation to link this new data to the tail of the
entry’s version chain. Specifically, the c&s operation is on
the header that the CN’s cursor points to. If the pointer in
the header is NULL, the c&s operation swaps the pointer to
point to the new data, and we treat this new data as a com-
mitted version. Otherwise, it means that the cursor does not
point to the tail of the chain and the CN performs a chain
walk to reach the tail and then issues another cs&s.

Afterwards, the CN uses a one-sided RDMA write to up-
date the shortcut of the entry to point to the new data version.
This step is off the performance critical path. The CN also
updates its cursor to the newly written version. We do not in-

validate or update other CNs’ cursors at this time to improve
the scalability and performance of Clover.

Clover’ chained structure and write mechanism ensure

that writers do not block readers and readers do not block
writers. They also ensure that readers can only view com-
mitted data. Without high write contention to the same data
entry, one write takes only two RTTs.
Retire. After committing a write, a CN can retire older
versions of the data entry, indicating that the buffer spaces
can be reclaimed. To improve performance and minimize
the need to communicate with MS, CNs lazily send asyn-
chronous, batched retirement requests to MS in the back-
ground. We further avoid the need for MS to invalidate CN-
cached metadata using a combination of timeout and epoch-
based garbage collection (see §5.2).

5.2 Control Plane

CNs communicate with MS using two-sided operations for
all metadata operations. MS performs all types of manage-
ment of DNs. We carefully designed the MS functionalities
for best performance and scalability.

Space allocation. With Clover’s out-of-place write model,
Clover has high demand for DN space allocation. We use
an efficient space allocation mechanism where MS packages
free spaces of all DNs into chunks. Each chunk hosts data
buffers of the same size. Different chunks can have differ-
ent data sizes. Instead of asking for a new free space be-
fore every write, each CN requests multiple spaces at a time
from MS in the background. This approach moves space al-
location off the performance critical path and is important to
deliver good write performance.

Garbage collection. Clover’ append-only chained data
structure makes its writes very fast. But like all other append-
only and log-structured storage systems, Clover needs to
garbage collect (GC) old data. We design a new efficient
GC mechanism that does not involve any data movement or
communication to DN. It also minimizes the communication
between MS and CNis.

The basic flow of GC (a strawman implementation) is sim-
ple: MS processes incoming retire requests from CNs by
putting reclaimed spaces to a free list (FreeList). It gets
free spaces from the FreeList when a CN requests more free
buffers. A free space can be used by any CN for any new
writes, as long as the size fits.

Although the above strawman implementation is simple,
making GC work correctly, efficiently, and scale well is
challenging. First, to achieve good GC performance, we
should avoid the invalidations of CN cached cursors after
reclaiming buffers to minimize the network traffic between
MS and CNs. However, with the strawman GC implemen-
tation, CNs’ outdated cursors can cause failed chain walks.
We solve this problem using two techniques: 1) MS does
not clear the header (or the content) of a data buffer after
reclaiming it, and 2) we assign a GC version to each data

USENIX Association

2020 USENIX Annual Technical Conference 39

buffer. MS increases the GC version after reclaiming a data
buffer. It gives this new GC version together with the loca-
tion of the buffer when assigning the buffer as a free space
to a CN, CNy. Before CN}, uses the space for a new write,
the content of this space at the DN contains old data and old
GC version. After CN}, uses the space for a write, it contains
new data and new GC version. Other CNs that have cached
cursors to this buffer need to differentiate these two cases. A
CN tells if a buffer contains its intended data by comparing
the GC version in its cached cursor to the one it reads from
the DN. If they do not match, the CN will discard the read
data and invalidate its cached cursor. Our GC-version ap-
proach not only avoids the need for MS to invalidate cursor
caches on CNs, but also eliminates the need for MS to access
DNs during GC.

The next challenge is related to our goal of read-isolation
and atomicity guarantees (i.e., readers always read the data
that is consistent to its metadata header). An inconsistent
read can happen if the read to a data buffer takes long, and
during the reading time, this buffer has been retired by an-
other CN, reclaimed by MS, assigned to a CN as a newly
allocated buffer, and used to perform a write. We use a read
timeout scheme similar to FaRM [15] to prevent this incon-
sistent case. Specifically, we abort a read operation after two
RTTs, since the above steps in the problematic case take at
least (and usually a lot more than) two RTTs (one for a CN
to submit the retirement request to MS and one for MS to
assign the space to a new CN).

The final challenge is the overflow of GC versions. We
can only use limited number of bits for GC version in the
header of a data buffer (currently 8 bits), since the header
needs to be smaller than the size of an atomic RDMA opera-
tion. When the GC version of a buffer increases beyond the
maximum value, we have to restart it from zero. With just
our GC mechanism so far, CNs will have no way to tell if
a buffer matches its cached cursor version or has advanced
by 28 = 256 versions. To solve this rare issue without in-
validation traffic to CNs, we use an epoch-based timeout
mechanism. When MS finds the GC version of a data buffer
overflows, it puts the reclaimed buffer into an OvflowList and
waits for T, (a configurable time value) before moving it to
the FreeList. All CNs invalidate their own cursors after an
inactive period of T, (if during this time, the CN access the
buffer, it would have advanced the cursor already). To syn-
chronize epoch time, MS sends a message to CNs after 7T,.
Epoch messages are the only communication from MS to
CNs during GC.

5.3 Discussion

The Clover design offers four benefits. First, Clover yields
the best performance among all pDPM systems; it outper-
forms pDPM-Direct and pDPM-Central for both reads and
writes, and both with and without contention. Achieving this
low latency while guaranteeing atomic write and read com-

mitted is not easy. Four approaches enable us to reach this
goal: 1) ensuring that the data path does not involve MS, 2)
reducing metadata communication to MS and moving it off
performance critical paths, 3) ensuring no memory copy in
the whole data path, and 4) leveraging the unique advantages
of pDPM to perform RDMA atomic operations.

Second, Clover scales well with the number of CNs and
DN, since its reads and writes are both lock free. Readers
do not block writers or other readers and writers do not block
readers. Concurrent writers to the same entry only contend
for the short period of an RDMA c& s operation. Clover also
minimizes the network traffic to MS and the processing load
on MS, which enables MS to scale well with the number of
CNs and with the amount of data operations.

Third, we avoid data movement and communication be-
tween MS and DNs entirely during GC. To scale and sup-
port many CNs with few MSs, we also avoid CN invalidation
messages. MS does not need to proactively send any other
messages to CNs either. Essentially, MS never pushes any
messages to CNs. Rather, CNs pull information from MS.
Furthermore, MS adopts a thread model that adaptively lets
working threads sleep to reduce MS’s CPU utilization.

Finally, the Clover data structure is flexible and can sup-
port load balancing very well. Different versions of a data
entry do not need to be on the same DN. As we will see in
§5.4 and §5.5, this flexible placement is the key to Clover’s
load balancing and data replication needs.

However, Clover also has its limitation. Each write in
Clover requires two RTTs and under heavy contention, its
write performance degrades. As we will see in §6, two-
sided aDPM systems outperform Clover with write-intensive
workloads, since they can complete writes in one RTT. For-
tunately, most datacenter workloads are read-most [7], and
under common cases, Clover delivers great performance.

5.4 Failure Handling

DN can fail independently from CNs. Clover needs to han-
dle both transient and permanent failures of a DN. For the
former, Clover guarantees that a DN can recover all its com-
mitted data after reboot (i.e., crash consistent). For the latter,
we add the support of data replication across multiple DNs
to Clover. In addition, Clover also handles the failure of MS.
Recovery from transient failures. Clover’s recovery mech-
anism of a single DN’s transient failure is simple. If a DN
fails before a CN successfully links the new data it writes to
the chain (indicating an un-committed write), the CN simply
discards the new write by treating the space as unused.
Data redundancy. With the user-specified degree of replica-
tion being N, Clover guarantees that data is still accessible
after V —1 DN have failed. We propose a new atomic repli-
cation mechanism designed for the Clover data structure.
The basic idea is to link each version of a data entry Dy
to all the replicas of the next version (e.g., D% 1, D%, 1,
DY, for three replicas) by placing pointers to all these

40 2020 USENIX Annual Technical Conference

USENIX Association

] ||
il

|
DN1 DN2 DN3 DN4

Figure 4: Replicated Data Entry. A replicated data entry on four
DNs. The replication factor is two.

vl Z

\

replicas in the header of Dy . Figure 4 shows an example of
a replicated data entry (with the degree of replication being
2). With this all-way chaining method, Clover can always
construct a valid chain as long as one copy of each version
in a data entry survives.

Each data entry version has a primary copy and one or

more secondary copies. To write a new version, Dy 1, to
a data entry whose current tail is D with R replicas, a CN
first writes the new data to R DNs. In parallel, the CN per-
forms a one-sided c&s to a bit, B,,, in the header of the
primary copy of Dy to test if the entry is already in the mid-
dle of a replicated write. If not, the bit will be set, indicating
that the entry is now under replicated write. All the writes
and the c&s operation are sent out in parallel to minimize
latency. After the CN receives the RDMA acknowledgment
of all the operations, it constructs a header that contains R
pointers to the copies of D1 and writes it to all the copies
of Dp. Once the new header is written to all copies of Dy,
the system can recover Dy from crashes (up to R — 1
concurrent DN failure).
MS redundancy. MSs manage several types of metadata.
Among them, the only type of metadata that cannot be recon-
structed is keys (of key-value entries) and the mapping from
a key to the location of its data entries in DNs. To avoid MS
being the single point of failure, we implement a mechanism
to include one or more backup MS. When creating (deleting)
a new key-value data entry, the primary MS synchronously
replicates (removes) the key and the head of the value chain
to all the backup MSs. These metadata are the only meta-
data that cannot be reconstructed. MSs reconstruct all other
metadata by reading value chains in DNs.

5.5 Load Balancing

A pDPM system has a pool of DNSs. It is important to balance
the load to each of them. We use a novel two-level approach
to balance loads in Clover: globally at MS and locally at
each CN. Our global management leverages two features in
Clover: 1) MS is the party that assigns all new spaces to
CNs, and 2) data versions of the same entry in Clover can
be placed on different DNs. To reduce the load of a DN, MS
assigns more free spaces from other DN to CNs at allocation
time. Each CN internally balances the load to different DNs
at runtime. Each CN keeps one bucket per DN to store free
spaces. It chooses free spaces from different buckets for new
writes according to its own load balancing needs.

6 Evaluation Results

This section presents the evaluation results of Clover. We
compare it with pDPM-Direct, pDPM-Central, two dis-
tributed PM-based systems, Octopus [42] and Hotpot [56],
and a two-sided RDMA-based key-value store, HERD [30].
All our experiments were carried out in a cluster of 14 ma-
chines, connected with a 100 Gbps Mellanox InfiniBand
Switch. Each machine is equipped with two Intel Xeon E5-
2620 2.40GHz CPUs, 128 GB DRAM, and one 100 Gbps
Mellanox ConnectX-4 NIC.

In order to compare the pDPM architecture with a low-
cost aDPM architecture, we use Mellanox BlueField, a
SmartNIC that includes an ARM-based SoC and a 100 Gbps
Mellanox ConnectX-5 NIC [44]. We port HERD to Blue-
Field by migrating it from x86 to ARM (we call the ported
HERD running on BlueField HERD-BF).

Unfortunately, at the time of writing, we cannot get hold
of real Intel Optane DC, and we use DRAM as PM. Our
experiments run on machines with PCle 3.0 x8 (7.87 GB/s),
and the bandwidth from RDMA-NIC to DRAM is capped by
it, making the effective bandwidth at most 7.87 GB/s. Intel
Optane DC’s read bandwidth is 6.6 GB/s [70], which is close
to PCle 3.0 x8. Thus, we envision read results to be similar
with real Optane. Optane’s write bandwidth is 2.3 GB/s, and
there may be some difference in our write results with real
Optane. But since our target is read-most workloads, we be-
lieve that the conclusion we make from our evaluation will
still be valid with real PM.

6.1 Micro-benchmark Performance

We first evaluate the basic read/write latency of Clover and
the systems in comparison using a simple micro-benchmark
where a CN synchronously reads/writes a key-value data en-
try on a DN. For this and all the rest of our experiments, we
use HERD’s default configuration of 12 busy polling receiv-
ing side’s threads for both HERD and HERD-BF.

Figure 5 plots the read latency with different request sizes.
We use native RDMA one-sided read as the baseline. Over-
all, Clover’s performance is the best among all systems and
is only slightly worse than native RDMA. pDPM-Direct has
great read performance when the request size is small. How-
ever, when request size increases, the overhead of CRC cal-
culation dominates, largely hurting pPDPM-Direct’s read per-
formance. As expected, pDPM-Central’s read performance
is not good because of its 2-RTT read protocol. HERD per-
forms worse than Clover because it requires some extra CPU
processing time for each read. HERD-BF has a constant
overhead over HERD mainly because its processing is per-
formed in BlueField’s low-power ARM cores.

Figure 6 plots the average write latency comparison. We
use native RDMA one-sided write as a baseline here. Among
pDPM systems, Clover and pDPM-Central achieve the best
write latency. pDPM-Direct’s write performance is the worst

USENIX Association

2020 USENIX Annual Technical Conference 41

15) e—epppM-Direct A“AHERD-BF 207 e—epppM-Direct
®—8pDPM-Central #A—AHERD
Clover

Verbs read

us)

Clover
Verbs write

(
-
o

Latency

A--AHERD-BF
®—8pDPM-Central #A—AHERD

N
o

pDPM-Direct mpDPM-Direct-R
mpDPM-Central mpDPM-Central-R
Clover mClover-R
m Octopus

N
=}

-
w”

Throughput (MOPS)
w S

o

0
128 256 512 1K 2K 4K 128 256 512
Request Size (B)

Figure 5: Read Latency.

because of its 4-RTT write protocol. Its write performance
also gets worse with larger request size because of the in-
creased overhead of CRC calculation. HERD outperforms
Clover and other pDPM systems because two-sided com-
munication allows it to complete a write within one RTT.
HERD-BEF is still a lot worse than HERD because of Blue-
Field’s low processing power.

6.2 YCSB Performance and Scalability

We now present our evaluation results using the YCSB
benchmark [13, 71]. We use a total of 100K key-value en-
tries and 1M operations per test. The accesses to keys follow
the Zipf distribution. We use three workloads with different
read-write ratios: read only (workload C), 5% write (work-
load B), and 50% write (workload A). These three workloads
follow common application patterns in datacenters [7] and
are the set that previous PM and in-memory store systems
used for evaluation [30, 38, 47, 69].

Basic performance. We first evaluate the performance of
Clover, pDPM-Direct, pPDPM-Central, Octopus, and Hotpot
under the same configuration: 4 CNs and 4 DNs, each CN
running 8 application threads. Neither Octopus nor Hot-
pot directly support key-value interface. In order to run the
YCSB key-value store workloads, we run MongoDB [50],
a key-value store database, on top of Octopus and Hotpot.
Note that HERD only supports one DN and we cannot com-
pare with HERD or HERD-BF in this experiment. We also
evaluate replication with our three pDPM systems here (with
degree of replication 2). Figure 7 shows the overall perfor-
mance of these systems. Hotpot yields similar performance
as Octopus and we omit its results in the figure.

Clover performs the best among all systems for all work-
loads. We further look into the Clover results and find that
the average number of hops during chain walks is only 0.2
to 0.3 for reads and 3.7 to 3.9 for writes. pDPM-Direct
performs better with read-most workloads than write-most
workloads. This is because without the need to perform any
locking, its read performance is not affected by contention.
pDPM-Central’s performance is the worst among pDPM sys-
tems, because under contention (Zipf distribution), the coor-
dinator becomes the bottleneck.

The overall performance of Octopus and Hotpot is more
than an order of magnitude worse than all pDPM systems.
There are two main reasons. First, these systems do not di-

Figure 6: Write Latency.

C(0%) B(5%) A(50%)

2K 4K

Request Size (B)

Figure 7: Throughput Comparison with YCSB.
Running YCSB on four CNs and four DNs.

Workload | Median | Average | 99%

C 1 1 1
B 1 1.26 5
A 1 1.33 6

Table 2: Clover RTTs.

rectly support key-value interface, and running MongoDB
on top of them adds overhead. Unfortunately, there is no ex-
isting distributed PM systems that directly support key-value
interface as far as we know. Second, each read and write
operation in these systems involves a complex protocol that
requires RPCs across multiple nodes.

To further understand Clover’s performance, we mea-
sure the number of RTTs incurred when running YCSB on
Clover. Table 2 shows the median, average, and 99% RTTs
of Clover. Clover requires only one RTT for read-most work-
loads. Even for 50% write (workload A), Clover only incurs
six RTTs at 99% and one RTT at median.

Replication overhead. As expected, adding redundancy low-
ers the throughput of write operations for all pDPM systems.
Even though these systems issue the replication requests in
parallel, they only use one thread to perform asynchronous
RDMA read/write operations, and doing so still has an over-
head. However, the overhead is small.

Scalability. Next, we evaluate the scalability of different
systems with respect to the number of CNs and the num-
ber of DNs. Figure 8 shows the scalability of pDPM sys-
tems, HERD, and HERD-BF when varying the number of
CNs with a single DN. Clover and HERD have the best (and
similar) performance with workload C. Both systems sat-
urate network bandwidth, and neither have any scalability
bottlenecks. With workload B, the performance of Clover is
slightly worse than HERD because of increased write con-
tention. HERD-BF performs worse and scales worse than
Clover and HERD for both workloads mainly because of its
limited processing power. pPDPM-Central performs the worst
and does not scale well with more CNs. pDPM-Direct also
performs poorly with fewer CNs. Apart from the limitation
of these system’s designs, their inefficient thread models also
contribute to their worse performance.

Figure 9 shows the scalability of pDPM data stores w.r.t.
the number of DNs (HERD only supports single memory
node and we cannot include it in this experiment). Clover
scales well with DNs because CNs access DNs directly for
data accesses, having no scalability bottleneck. pDPM-

42 2020 USENIX Annual Technical Conference

USENIX Association

g 8 Clover #®HERD #4HERD-BF g 8 gu’ 25 Clover $15
g o S € 20 [®®ppPM-Direct g
=~ 6,,. =6 < |==pDPM-Central =10
5 4 =] =] =]
2, 2, 2.10 2, _
< < < < 5 ad
o,) o)
3“4 ®—®pDPNM-Direct 3 3 ST 3
N ®—8pDPM-Central “ el T N
20 < < 0 <0
= 2 4 = 2 4 B 2 4 g H 2 4 8
Number of CNs Number of CNs Number of DNs Number of DNs
(a) Workload C (0%) (b) Workload B (5%) (a) Workload C (0%) (b) Workload B (5%)
Figure 8: Scalability w.r.t. CNs. Running I DNs. Figure 9: Scalability w.r.t. DNs. Running 4 CN.
Clover W Opt-HERD Clover m Opt—HERD
Uy, PDPM-Direct® Opt-HERD-BF 6000, PPPM-Direct®Opt-HERD-BF
8 ~ _ - ~
; pDPM-Central 5 pDPM-Central & 25 M1o0s M1s
E15 = HERD 2 4000 ® HERD s 20 Wios 0% é
= HERD-BF = HERD-BF e
210 & 4 15
1}
. 2000 2 :
0 s o g 10 o
S 3 ©
0 : 8 :
O c (0%) B (5%) A (50%) c (0%) B (5%) A (50%) & :
: . oot ; Figure 11: Energy Consumption N i Tomin T Gmite
Figure 10: CPU Utilization. Lighter T18 : gy ption. . gure 12: Effect of Rogm write
Lighter colors and darker colors represent : . Figure 13: Load Balanc-
colors and darker colors represent the CPU Metadata Cache in g

time used by the client side and the server
side. Opt-HERD and Opt-HERD-BF are hy-
pothetical optimal values.

Central has poor scalability because of the coordinator being
the bottleneck that all requests have to go through. Surpris-
ingly, pDPM-Direct’s scalability is also poor. This is because
when the number of DNs increases, network bandwidth has
not become a performance bottleneck, but CNs need to do
more CRC calculation to read/write to more DNs. This com-
putation overhead becomes the performance bottleneck.

6.3 CPU Utilization and Cost

CPU utilization and energy cost. We evaluate the CPU uti-
lization of different systems by calculating the total CPU
time to complete ten million requests in YCSB’s workloads
A, B, and C, as illustrated in Figure 10. We further sepa-
rate the CPU time used at client side (CNs) and at server
side (DNs, the coordinator, MS). The three pDPM systems
run four CNs and four DNs. HERD and HERD-BF run four
CNs and one DN. Since HERD only supports one DN, to es-
timate the CPU utilization and energy of a scale-out version
of HERD, we hypothetically assume that HERD can achieve
perfect scaling (i.e., we reduce HERD’s total run time by
a factor of four to model it running on four CNs and four
DNs). This hypothetical calculation is the optimal perfor-
mance HERD could have achieved.

We further calculate the total energy cost using the power
consumption of our CPU core [34] and the ARM core of
BlueField [52]. Figure 11 plots this result. We do not include
the energy cost of PM, since it is the same for all systems.

For read-most workload, pDPM-Direct and Clover use
less CPU time than pDPM-Central and HERD because
they perform one-sided RDMA directly from CNs to DNs.
HERD’s total CPU time is much longer than Clover even
with optimal scale-out calculation, because it uses many

the CPU time used by the client side and the Cl
server side. Opt-HERD and Opt-HERD-BF “~'OVel:
are hypothetical optimal values.

ing in Clover.

busy-polling threads at its server side to achieve good per-
formance (12 threads by default). Surprisingly, HERD-BF’s
energy is higher than HERD even when the power consump-
tion of an ARM core is more than an order of magnitude
lower than our CPU core. HERD-BF’s worse performance
makes each request to run longer and consumes more power.
pDPM-Central has high CPU utilization because the coordi-
nator’s CPU spends time on every request, and the total time
to finish the workloads with pDPM-Central is long. HERD’s
write performance and energy are both better than Clover.
pDPM systems consume more energy for write-heavy work-
loads because of their degraded write performance.

CapEx. Table | summarizes the cost to build different data
stores with 8 CNs and 8 DNs (for distributed PM, we use
eight machines in total). The CapEx is calculated with the
market price of 128 GB Intel Optane PM ($842 [5]), Mel-
lanox ConnectX-4 NIC ($795 [45]), Mellanox BlueField
NIC ($4168 [1]), and a DELL R740 server with the same
configuration as what we use in our experiments ($5000).
For servers with PM, we adjust the price difference between
PM and DRAM to the whole server price ($4144). Dis-
tributed PM has the lowest CapEx because it can share PM
and only needs eight machines in total. aDPM with CPU re-
quires 16 machines in total (8 for CNs and 8 for DNs). The
three pDPM systems and aDPM with BlueField do not re-
quire full machines for DNs and we only include PM and
NIC costs for them. Surprisingly, the cost of BlueField is
similar to a full machine. We suspect that this is because
BlueField is in a new and small market, and we expect its
price to drop in the future (but still not as low as pDPM).

USENIX Association

2020 USENIX Annual Technical Conference 43

6.4 Metadata Caching

Each data entry in Clover requires a constant of 8 B meta-
data (which is much smaller than typical key-value sizes of
100B - 1000 B [7]). To evaluate the effect of different sizes
of metadata cache at CNs in Clover, we ran the same YCSB
workloads and configuration as Figure 7 and plot the results
in Figure 12. Here, we use the FIFO eviction policy (we
also tested LRU and found it to be similar or worse than
FIFO). With smaller metadata cache, all workloads’ perfor-
mance drop because a CN has to get the metadata from the
MS before accessing a data entry that is not in the local meta-
data cache. With no metadata cache (0%), CNs need to get
metadata from the MS before every request. However, under
Zipf distribution, with just 10% metadata cache, Clover can
already achieve satisfying performance.

6.5 Load Balancing

To evaluate the effect of Clover’s load balancing mechanism,
we use a synthetic workload with six data entries, a, b, and
cl to c4. The workload initially creates a (no replication)
and b (with 3 replicas) and reads these two entries continu-
ously. At a later time, it creates c1 to ¢4 (no replication) and
keeps updating them. One CN runs this synthetic workload
on three DNs. Figure 13 shows the total traffic to the three
DNs with different allocation and load-balancing policies.
With a naive policy of assigning DNs to new write requests
in a round-robin fashion and reading from the first replica,
write traffic spreads evenly across all DNs but reads all go to
DN-1. With write load balancing, MS allocates free entries
for new writes from the least accessed DN. Doing so spreads
write traffic more towards the lighter-loaded DN-2 and DN-3.
With read load balancing, Clover spreads read traffic across
different replicas depending on the load of DNs. As a result,
the total loads across the three DNs are completely balanced.

7 Conclusion and Discussion

This paper explores a passive disaggregated persistent mem-
ory architecture where remote PM data nodes do not need
any processing. We present Clover, a low-cost, fast, and scal-
able pDPM key-value store which separates data and control
planes. We compare Clover with two alternative pDPM sys-
tems we built, existing distributed PM systems, and disag-
gregated systems that include processing at data nodes. We
performed extensive evaluation of these systems and learned
both the benefits and the limitations of them. We end this
paper by discussing our overall findings and our suggestions
to future systems builders.

Cost Implication. pDPM’s CapEx cost saving compared
to aDPM is apparent: pDPM reduces the cost of a pro-
cessor and hardware (server) packaging to host the proces-
sor. pDPM’s OpEx cost saving mainly comes from avoiding
polling at storage nodes. aDPM needs to busy poll network
requests to achieve the low latency that can match PM’s per-

formance. Meanwhile, to sustain high-bandwidth network
(e.g., 100 Gbps and above), aDPM requires many CPU cores
or a parallel-hardware unit like FPGA to poll and process
requests in parallel, adding to more runtime cost.
Performance Implication. The major tradeoff of removing
computation from storage nodes in pDPM is the potential
increase in network RTTs to access storage nodes remotely.
While it is generally true that moving computation towards
data could achieve good performance, our pDPM key-value
store systems demonstrate that with careful design, RTTs in
pDPM systems could be minimized and in many cases be the
same as aDPM systems. In other cases (e.g., key-value put
with high-contention), aDPM has unavoidable performance
loss because of extra RTTs. On the other hand, not having
enough processing power in aDPM (e.g., when only using
ARM-based SoC) could lead to significant performance loss.
Application Implication. Building applications with the
pDPM model requires careful design. As we demonstrated
with the three different pDPM key-value store systems, dif-
ferent application design choices could directly affect how
well pDPM performs and scales. The best design would min-
imize RTTs while avoiding scalability bottlenecks, as with
Clover. This paper focuses on key-value store systems, as
they are widely used in many datacenter applications. Other
systems such as remote file systems, databases, object stores,
and data sharing can also build on the pPDPM model. As sys-
tems complexity increases, it will be more difficult to opti-
mize pDPM’s RTTs with just RDMA read, write, and atomic
operation interfaces. We believe that extended RDMA inter-
faces such as HyperLoop [35] could help in these cases.
Recommendation. This paper explores the extreme of com-
pletely removing computation power at storage nodes, which
helps set baselines in designing disaggregated PM systems.
Going forward, we believe that future disaggregated PM sys-
tems would benefit from a hybrid approach. Computation
that fundamentally involves multiple data accesses can be
moved to storage nodes, while the rest should be kept at
compute nodes. Among the former, those that have require
high performance can be placed on FPGA or ASIC to avoid
high CPU cost, while those that can tolerate degraded per-
formance can be placed at low-power cores.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd Anirudh Badam for their tremendous feedback and
comments, which have substantially improved the content
and presentation of this paper.

This material is based upon work supported by the Na-
tional Science Foundation under the following grant: NSF
1719215. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of NSF or other
institutions.

44 2020 USENIX Annual Technical Conference

USENIX Association

References

(1]
(2]
(3]
(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Private conversation with mellanox sales department,
March 2019.

Alibaba Cloud. Super computing cluster. https://
www.alibabacloud.com/product/scc, 2018.
Amazon. Amazon elastic block store. https:/

aws.amazon.com/ebs/?nc1=h_Is, 2019.

Amazon. Amazon s3. https://aws.amazon.com/s3/,
2019.

Anton Shilov. Pricing of intel’s optane dc persis-
tent memory modules leaks: From $6.57 per gb.
https://www.anandtech.com/show/14180/pricing-of-
intels-optane-dc-persistent-memory-modules-leaks,
2019. visited on 01/15/20.

Krste Asanovié. FireBox: A Hardware Building Block
for 2020 Warehouse-Scale Computers, February 2014.
Keynote talk at the 12th USENIX Conference on File
and Storage Technologies (FAST ’14).

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint In-
ternational Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS ’12), London,
UK, June 2012.

Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim
Kraska, and Erfan Zamanian. The End of Slow Net-
works: It’s Time for a Redesign. Proceedings of the
VLDB Endowment, 9(7):528-539, 2016.

Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers,
Jeremia Bir, and Zsolt Istvan. Achieving 10gbps line-
rate key-value stores with fpgas. In Presented as part
of the 5th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’13), San Jose, CA, USA, June
2013.

Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen,
and Haibo Chen. Fast and general distributed trans-
actions using rdma and htm. In Proceedings of the
Eleventh European Conference on Computer Systems
(EUROSYS ’16), London, UK, April 2016.

Brian Cho and Ergin Seyfe. Taking advantage of a
disaggregated storage and compute architecture. In
Spark+AI Summit 2019 (SAIS "19), San Francisco, CA,
USA, April 2019.

Chanwoo Chung, Jinhyung Koo, Junsu Im, Arvind, and
Sungjin Lee. LightStore: Software-Defined Network-
Attached Key-Value Drives. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems (ASPLOS ’19), Providence, RI, April
2019.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC
’10), New York, New York, June 2010.

Alexandras Daglis, Dmitrii Ustiugov, Stanko No-
vakovi¢, Edouard Bugnion, Babak Falsafi, and Boris
Grot. Sabres: Atomic object reads for in-memory rack-
scale computing. In 2016 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO
’16), Taipei, Taiwan, October 2016.

Aleksandar Dragojevié¢, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote
Memory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementa-
tion (NSDI ’14), Seattle, WA, USA, April 2014.
Aleksandar Dragojevi¢, Dushyanth Narayanan, Ed-
mund B. Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No
Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proceedings
of the 25th Symposium on Operating Systems Princi-
ples (SOSP ’15), Monterey, CA, USA, October 2015.
Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka,
and Mark Silberstein. NICA: An Infrastructure for In-
line Acceleration of Network Applications. In 2019
USENIX Annual Technical Conference (ATC "19), Ren-
ton, WA, July 2019.

Facebook. Introducing bryce canyon: Our
next-generation storage platform. https:
/lcode.fb.com/data-center-engineering/introducing-
bryce-canyon-our-next-generation-storage-platform/,
2017.

Paolo Faraboschi, Kimberly Keeton, Tim Marsland,
and Dejan Milojicic. Beyond processor-centric operat-
ing systems. In 15th Workshop on Hot Topics in Oper-
ating Systems (HotOS ’15), Kartause Ittingen, Switzer-
land, May 2015.

Gen-Z Consortium, 2018. https://genzconsortium.org.
Google. Available first on Google Cloud: Intel Optane
DC Persistent Memory. https://cloud.google.com/
blog/topics/partners/available-first-on-google-cloud-
intel-optane-dc-persistent-memory.

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over Commodity Ethernet at Scale. In Proceed-
ings of the 2016 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’16), Flo-
rianopolis, Brazil, August 2016.

Hewlett Packard. The Machine: A New Kind of
Computer. http://www.hpl.hp.com/research/systems-
research/themachine/, 2005.

Hewlett Packard Labs. Memory-driven com-
puting. https://www.labs.hpe.com/memory-driven-
computing, 2019.

Huawei. Huawei Launches New-Gen Servers Running

USENIX Association

2020 USENIX Annual Technical Conference 45

https://www.alibabacloud.com/product/scc
https://www.alibabacloud.com/product/scc
https://aws.amazon.com/ebs/?nc1=h_ls
https://aws.amazon.com/ebs/?nc1=h_ls
https://aws.amazon.com/s3/
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://www.anandtech.com/show/14180/pricing-of-intels-optane-dc-persistent-memory-modules-leaks
https://code.fb.com/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://code.fb.com/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://code.fb.com/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://genzconsortium.org
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
http://www.hpl.hp.com/research/systems-research/themachine/
http://www.hpl.hp.com/research/systems-research/themachine/
https://www.labs.hpe.com/memory-driven-computing
https://www.labs.hpe.com/memory-driven-computing

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

on 2nd-Generation Intel® Xeon® Scalable Processors.
https://www.huawei.com/en/press-events/news/2019/
4/huawei-new- gen-servers-xeon-scalable-processors.
Intel Corporation. Intel Rack Scale Architecture:
Faster Service Delivery and Lower TCO. http:
/Iwww intel.com/content/www/us/en/architecture-
and-technology/intel-rack-scale-architecture.html.
Intel Corporation. Intel Optane Technology. https:
/lwww.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html, 2019.
Intel Corporation - Product and Performance Infor-
mation. Intel Non-Volatile Memory 3D XPoint. http:
/Iwww intel.com/content/www/us/en/architecture-
and-technology/non-volatile-memory.html?wapkw=
3d+xpoint, 2018.

Intel Corporation - Product and Performance Informa-
tion. Reimagining the data center memory and storage
hierarchy. https://newsroom.intel.com/editorials/re-
architecting-data-center-memory-storage-hierarchy/,
2019.

Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using RDMA Efficiently for Key-value Services.
In Proceedings of the 2014 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM
’14), Chicago, IL, USA, August 2014.

Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In Proceedings of the 2016 USENIX Annual
Technical Conference (ATC ’16), Denver, CO, USA,
June 2016.

Anuj Kalia, Michael Kaminsky, and David G. An-
dersen. FaSST: Fast, Scalable and Simple Dis-
tributed Transactions with Two-Sided (RDMA) Data-
gram RPCs. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16), Sa-
vanah, GA, USA, 2016.

Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. In Pro-
ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16), Atlanta, Geor-
gia, USA, April 2016.

Patrick Kennedy. Dual intel xeon €5-2620 (v1, v2 and
v3) compared. https://www.servethehome.com/dual-
intel-xeon-e5-2620-v1-v2-v3-compared/, 2015.
Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Honggiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-Based NIC-
Offloading to Accelerate Replicated Transactions in
Multi-Tenant Storage Systems. In Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18), Budapest,

(36]

[37]

(38]

[39]

(40]

[41]

[42]

[43]

[44]

Hungary, August 2018.
Daehyeok Kim, Tianlong Yu, Honggiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-based virtual RDMA networking for con-
tainerized clouds. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
’19), Boston, MA, USA, 2019 2019.

Mijung Kim, Jun Li, Haris Volos, Manish Marwah,
Alexander Ulanov, Kimberly Keeton, Joseph Tucek,
Lucy Cherkasova, Le Xu, and Pradeep Fernando.
Sparkle: Optimizing spark for large memory machines
and analytics. In Proceedings of the 2017 Symposium
on Cloud Computing (SoCC ’17), Santa Clara, CA,
USA, September 2017.

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yonggiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles (SOSP ’17), Shanghai, China, October
2017.

Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaib-
hav Gogte, Sriram Govindan, Dan R. K. Ports, Irene
Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and
Anirudh Badam. LeaplO: Efficient and Portable Vir-
tual NVMe Storage on ARM SoCs. In Proceedings of
the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS °20), Lausanne, Switzerland,
March 2020.

Kevin Lim, Jichuan Chang, Trevor Mudge,
Parthasarathy Ranganathan, Steven K. Reinhardt,
and Thomas F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In Proceed-
ings of the 36th Annual International Symposium on
Computer Architecture (ISCA °09), Austin, Texas,
2009.

Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F. Wenisch. System-level implications
of disaggregated memory. In Proceedings of the
2012 IEEE 18th International Symposium on High-
Performance Computer Architecture (HPCA ’12), New
Orleans, LA, USA, February 2012.

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Oc-
topus: an rdma-enabled distributed persistent memory
file system. In 2017 USENIX Annual Technical Con-
ference (ATC ’17), Santa Clara, CA, USA, July 2017.
Mellanox. ConnectX-6 Single/Dual-Port Adapter sup-
porting 200Gb/s with VPL. http://www.mellanox.com/
page/products_dyn?product_family=265&mtag=
connectx_6_vpi_card.
Mellanox. Bluefield

smartnic. http://

46

2020 USENIX Annual Technical Conference

USENIX Association

https://www.huawei.com/en/press-events/news/2019/4/huawei-new-gen-servers-xeon-scalable-processors
https://www.huawei.com/en/press-events/news/2019/4/huawei-new-gen-servers-xeon-scalable-processors
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-rack-scale-architecture.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html?wapkw=3d+xpoint
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://newsroom.intel.com/editorials/re-architecting-data-center-memory-storage-hierarchy/
https://www.servethehome.com/dual-intel-xeon-e5-2620-v1-v2-v3-compared/
https://www.servethehome.com/dual-intel-xeon-e5-2620-v1-v2-v3-compared/
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/page/products_dyn?product_family=265&mtag=connectx_6_vpi_card
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

www.mellanox.com/related-docs/prod_adapter_cards/
PB _BlueField_Smart_NIC.pdf, 2018.

Mellanox. Mellanox connectx-4 adapter product
brief. https://www.mellanox.com/files/doc-2020/pb-
connectx-4-vpi-card.pdf, 2020. visited on 06/01/20.
Microsoft. Introducing new product innovations for
SAP HANA, Expanded Al collaboration with SAP
and more. https://azure.microsoft.com/en-us/blog/
introducing-new-product-innovations-for-sap-hana-
expanded-ai-collaboration-with-sap-and-more/.
Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-sided RDMA Reads to Build a Fast, CPU-
efficient Key-value Store. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC ’13), San
Jose, CA, USA, June 2013.

Christopher Mitchell, Kate Montgomery, Lamont Nel-
son, Siddhartha Sen, and Jinyang Li. Balancing cpu
and network in the cell distributed b-tree store. In Pro-
ceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference (ATC ’16), Denver, CO,
USA, June 2016.

Radhika Mittal, Alexander Shpiner, Aurojit Panda, Ei-
tan Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Scott Shenker. Revisiting network support for
rdma. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM ’18), Budapest, Hungary, August 2018.
MongoDB Inc. MongoDB. http://www.mongodb.org/.
Mihir Nanavati, Jake Wires, and Andrew Warfield.
Decibel: Isolation and Sharing in Disaggregated Rack-
Scale Storage. In I4th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
’17), Boston, MA, March 2017.

Peng Peng, You Mingyu, and Xu Weisheng. Running
8-bit dynamic fixed-point convolutional neural network
on low-cost arm platforms. In 2017 Chinese Automa-
tion Congress (CAC), Jinan, China, Oct 2017.

William Pugh. Skip lists: A probabilistic alterna-
tive to balanced trees. Communication of the ACM,
33(6):668—676, June 1990.

Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yangin Jin,
Yang Liu, and Steven Swanson. Willow: A User-
Programmable SSD. In /71th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’14), Broomfield, CO, October 2014.

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. LegoOS: A Disseminated, Distributed OS for
Hardware Resource Disaggregation. In /3th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI ’18), Carlsbad, CA, October 2018.
Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Dis-
tributed shared persistent memory. In Proceedings of
the 8th Annual Symposium on Cloud Computing (SoCC

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

’17), Santa Clara, CA, USA, September 2017.

David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. In Proceedings of the Fifteenth European Confer-
ence on Computer Systems (EuroSys ’20), Heraklion,
Greece, April 2020.

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Radu
Stoica, Bernard Metzler, Nikolas Ioannou, and Ioannis
Koltsidas. Crail: A high-performance i/o architecture
for distributed data processing. IEEE Bulletin of the
Technical Committee on Data Engineering, 40:40-52,
March 2017. Special Issue on Distributed Data Man-
agement with RDMA.

Kosuke Suzuki and Steven Swanson. The non-volatile
memory technology database (nvmdb). Technical Re-
port CS2015-1011, Department of Computer Science
& Engineering, University of California, San Diego,
May 2015.

Tom Talpey and Jim Pinkerton. Rdma durable write
commit. https://tools.ietf.org/html/draft-talpey-rdma-
commit-00, 2016.

Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu
Chen. DMA cache: Using on-chip storage to archi-
tecturally separate I/O data from CPU data for improv-
ing I/O performance. In The Sixteenth International
Symposium on High-Performance Computer Architec-
ture (HPCA ’10), Bangalore, India, Jan 2010.
TECHPP. Alibaba singles’ day 2019 had a record peak
order rate of 544,000 per second. https://techpp.com/
2019/11/19/alibaba-singles-day-2019-record/, 2019.
Tejas Karmarkar. Availability of linux rdma on mi-
crosoft azure. https://azure.microsoft.com/en-us/blog/
azure-linux-rdma-hpc-available, 2015.

Haris Volos, Kimberly Keeton, Yupu Zhang, Milind
Chabbi, Se Kwon Lee, Mark Lillibridge, Yuvraj Patel,
and Wei Zhang. Memory-oriented distributed comput-
ing at rack scale. In Proceedings of the ACM Sympo-
sium on Cloud Computing, (SoCC ’18), Carlsbad, CA,
USA, October 2018.

Midhul Vuppalapati, Justin Miron, Rachit Agarwal,
Dan Truong, Ashish Motivala, and Thierry Cruanes.
Building An Elastic Query Engine on Disaggregated
Storage. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI °20), Santa
Clara, CA, February 2020.

Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed trans-
actions: Hybrid is better! In /3th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’18), Carlsbad, CA, October 2018.

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In Proceedings of the 25th
Symposium on Operating Systems Principles (SOSP

USENIX Association

2020 USENIX Annual Technical Conference 47

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-vpi-card.pdf
https://www.mellanox.com/files/doc-2020/pb-connectx-4-vpi-card.pdf
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
http://www.mongodb.org/
https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://tools.ietf.org/html/draft-talpey-rdma-commit-00
https://techpp.com/2019/11/19/alibaba-singles-day-2019-record/
https://techpp.com/2019/11/19/alibaba-singles-day-2019-record/
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available

[68]

[69]

[70]

[71]

[72]

[73]

’15), Monterey, CA, USA, October 2015.

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and An-
drew Pavlo. An empirical evaluation of in-memory
multi-version concurrency control. Proceedings of the
VLDB Endowment, 10(7):781-792, March 2017.

Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A distributed file system for non-volatile main
memory and rdma-capable networks. In /7th USENIX
Conference on File and Storage Technologies (FAST
’19), Boston, MA, USA, February 2019.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), Santa Clara, CA, February
2020.

YCSB-C, 2015. https://github.com/basicthinker/
YCSB-C.

Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The End of a Myth: Distributed Transac-
tions Can Scale. Proceedings of the VLDB Endowment,
10(6):685-696, 2017.

Yiying Zhang, Jian Yang, Amirsaman Memaripour,
and Steven Swanson. Mojim: A Reliable and Highly-
Available Non-Volatile Memory System. In Proceed-
ings of the 20th International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems (ASPLOS ’15), Istanbul, Turkey, March
2015.

48 2020 USENIX Annual Technical Conference

USENIX Association

https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C

	Introduction
	Background and Related Work
	PM and Distributed PM Storage
	RDMA and RDMA-Based Data Stores
	Resource Disaggregation

	pDPM Overview
	Passive Disaggregated Persistent Memory
	pDPM Challenges
	System Interface and Guarantees
	Network Layer

	Alternative pDPM Systems
	Direct Connection
	Connecting Through Coordinator
	pDPM-Direct/-Central Drawbacks

	Clover
	Data Plane
	Control Plane
	Discussion
	Failure Handling
	Load Balancing

	Evaluation Results
	Micro-benchmark Performance
	YCSB Performance and Scalability
	CPU Utilization and Cost
	Metadata Caching
	Load Balancing

	Conclusion and Discussion

