Firefly: Untethered Multi-user VR for Commodity Mobile Devices

Authors: 

Xing Liu, University of Minnesota, Twin Cities; Christina Vlachou, Hewlett Packard Labs; Feng Qian and Chendong Wang, University of Minnesota, Twin Cities; Kyu-Han Kim, Hewlett Packard Labs

Abstract: 

Firefly is an untethered multi-user virtual reality (VR) system for commodity mobile devices. It supports more than 10 users to simultaneously enjoy high-quality VR content using a single commodity server, a single WiFi access point, and commercial off-the-shelf (COTS) mobile devices. Firefly employs a series of techniques including offline content preparation, viewport-adaptive streaming with motion prediction, adaptive content quality control among users, to name a few, to ensure good image quality, low motion-to-photon delay, a high frame rate at 60 FPS, scalability with respect to the number of users, and fairness among users. We have implemented Firefly in 17,400 lines of code. We use our prototype to demonstrate, for the first time, the feasibility of supporting 15 mobile VR users at 60 FPS using COTS smartphones and a single AP/server.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {254406,
author = {Xing Liu and Christina Vlachou and Feng Qian and Chendong Wang and Kyu-Han Kim},
title = {Firefly: Untethered Multi-user {VR} for Commodity Mobile Devices},
booktitle = {2020 {USENIX} Annual Technical Conference ({USENIX} {ATC} 20)},
year = {2020},
isbn = {978-1-939133-14-4},
pages = {943--957},
url = {https://www.usenix.org/conference/atc20/presentation/liu-xing},
publisher = {{USENIX} Association},
month = jul,
}

Presentation Video