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State-of-the-art

• Flashback (Mobisys 2016) – Aggressive prerendering, local memorization.
• Furion (Mobicom 2017) – Pipelining, offloading.



Firefly

• A low cost and easy to deploy colocation multi-user VR system that supports…
ü 10+ users with mobility

ü High quality VR content
ü 60 FPS
ü Low motion-to-photon latency
ü Quad HD

ü Single server/AP, commodity smartphones, cheap VR headsets (e.g. google cardboard)

• Team training, group therapy, collaborative product design, multi-user gaming…



Challenges

• Weak mobile GPU

• Energy/heat constrains
• Heterogeneous computing capabilities

• Multi-user scalability
• Client-server load split
• Single AP bandwidth limitation



Outline

• Overview
• Firefly System Components
• Evaluation
• Summary



High Level Architecture

• A Serverless Design
• full-fledged client rendering
• far from being powerful enough

• Edge offloading
• server real-time rendering, streamed as encoded VR frames
• high encoding overhead for single server (~150 FPS for Quad HD)

• Performs One-time, Exhaustive Offline Rendering
• Offline: prepare all possible VR viewports, encodes as video stream
• Online: streams based on VR motion
• eliminates rendering/encoding overhead, scales to tens of users, at the cost of high mem, disk 

and network usage.
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Offline Rendering Engine

• Populates the content DB by…
• Discretizing whole VR space into grids
• At each grid, renders a panoramic VR frame (360° view)
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Offline Rendering Engine

• Tiles
• Independently transmitted & decoded
• Streams at tile level

• Finer fetching granularity
• Bandwidth saving

• Office vs. Museum
• Map size: 30 X 30 m
• Grid size: 5cm
• Size: 137GB vs. 99GB
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How to fetch tiles?

• 6 degree of freedom (DoF)
• Translational
• Rotational
• (x, y, z, yaw, pitch, roll) -> tile x

• Fetch based on user’s VR motion
• End-to-end latency estimation: 3ms + 30ms + 34ms  +  3ms = 70ms

• Motion-to-photon latency requirement: 1000ms / 60FPS = 16.7ms

req      trans     decode     render



Understanding VR Motion Predictability

• VR user motion data collection
• 25 participants 
• Unity API (Office, Museum)
• 6-DoF motion enabled by Oculus Rift
• 6-DoF trajectory recorded
• 50 5-min VR trajectory traces



VR User Motion Profile 
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Understanding VR Motion Predictability

• A simple Linear Regression (LR) model (H=50ms, P=150ms)

• MAEtrans = 1.4cm, MAElat = 1.9°, MAElon = 7.6° (FoV 100° x 90°)

• Predict each dimension separately 
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VR User Stationary Periods (SP)

• Within a 5-min VR session…
• 43 seconds of SP
• SP are short (~ 1s), but frequent
• Sudden movements makes prediction unavailable

• Moving – fetch based on prediction
• Stationary – fetch (best-effort) neighboring tiles 0 2 4 6 8 10 12
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TAKE AWAY: 
1. Users’ motion profile are diverse.
2. Good predictability for continuous VR motion.
3. Need to handle sudden movements.



System Architecture 
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Features
• maximize the quality level, minimize 

stall and quality switch
• Fairness among users
• Fast pace
• Scale more users
• Optimization vs. heuristics



Adaptive Quality Control (AQC)

T = get_total_bw_from_AP() * λ
Q’[1..n] = Q[1..n]
B[1..n] = get_individual_bw_from_AP([1..n]) * λ
foreach user i:

while (bw_util(Tiles[i],Q’[i])≥B[i] and Q’[i] is not lowest):
Q’[i] = Q’[i] - 1

T = T – min(B[i], max(RESERVE, bw_util(Tiles[i], Q’[i])))
if (T < 0):

lru_decrease(Q’[1..n]) until (T≥0 or Q’[1..n] are lowest)
else:

lru_increase(Q’[1..n]) until (T≈0 or Q’[1..n] are highest)
Q[1..n] = Q’[1..n]
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n: total number of users
T: total available bandwidth across all users
Q: users’ current quality levels (input & output)
Tiles: users’ to-be-fetched tile lists (input)
Q’: local copy of Q
B: individual user’s available bandwidth
λ: bandwidth usage safety margin
RESERVE: reserved bandwidth for each user
bw_util: estimate bandwidth requirement for the request
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Dynamic Foreground Objects

• Other users’ avatars, control panel, etc.

• Foreground objects are rendered locally real-time
• Pre-render not feasible
• Less rendering compared with complex backgrounds 
• Latency sensitive

• Adaptive object rendering
• Prepare lower quality by mesh simplification
• Dynamic decision
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Implementation and Evaluation Setup

• Offline rending engine: Unity API and ffmpeg, C#/Python (LoC 1,500)

• Client: Android SDK (LoC 14,900)
• Tile decoding: Android MediaCodec
• Projection/rendering: OpenGL ES
• L1 cache: OpenGL frame buffer object (FBO)

• Server: Python (LoC 1,000)

• “Replayable” experiment (15 devices)
• SGS8 x 2, SGN8, MOTO Z3, SGS 10
• Raspberry Pi4 x 10
• Server colocates with AP in a VR lab
• Clients randomly distributed



Overall Performance Comparison
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Firefly vs. multi-user Furion vs. Perfect

• FPS, stall, content quality, motion-to-photon delay, inter-frame quality variation, intra-frame quality variation, fairness

• Overall, Firefly achieves good performance across all metrics

• 90%/99% of the time FPS ≥ 60/50

• Stall = 1.2 sec/min

• Bandwidth consumption (15 users) < 200 Mbps

• Quad HD (2560 x 1440) with average CRF = 23.8

…



Micro Benchmarks 

• Impact of AQC

• Impact of Bandwidth Reservation for stationary periods

• Impact of different viewport prediction strategy

• Impact of adaptive object quality selection

• …



Case Study - Adaptiveness to Number of Users
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The global available bandwidth is throttled at 200 Mbps
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Case Study - Adaptiveness to Available Bandwidth
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Energy Usage and Thermal Characteristics

• After 25 mins of Firefly client usage, a fully charged smartphone
• Battery left: 92% ~ 96%
• GPU temperature < 50°C



Summary

• Firefly supports 15 VR users at 60 FPS using commodity smartphones and a single 
AP/server.
• Our design makes judicious decisions on

• partitioning the workload (offline vs. runtime, client vs. server)
• making the system adaptive to the available network/computation resources
• handling VR users’ fast-paced motion

• Core concepts of Firefly are applicable to other multi-user scenarios (AR/MR)


