
Firefly: Untethered 
Multi-user VR for 
Commodity Mobile 
Devices

Xing Liu, Christina Vlachou, Feng 
Qian, Chendong Wang, Kyu-Han Kim



Motivation

Cost

Performance

User 
mobility

Deployment

User 
scalability



State-of-the-art

• Flashback (Mobisys 2016) – Aggressive prerendering, local memorization.
• Furion (Mobicom 2017) – Pipelining, offloading.



Firefly

• A low cost and easy to deploy colocation multi-user VR system that supports…
ü 10+ users with mobility

ü High quality VR content
ü 60 FPS
ü Low motion-to-photon latency
ü Quad HD

ü Single server/AP, commodity smartphones, cheap VR headsets (e.g. google cardboard)

• Team training, group therapy, collaborative product design, multi-user gaming…



Challenges

• Weak mobile GPU

• Energy/heat constrains
• Heterogeneous computing capabilities

• Multi-user scalability
• Client-server load split
• Single AP bandwidth limitation



Outline

• Overview
• Firefly System Components
• Evaluation
• Summary



High Level Architecture

• A Serverless Design
• full-fledged client rendering
• far from being powerful enough

• Edge offloading
• server real-time rendering, streamed as encoded VR frames
• high encoding overhead for single server (~150 FPS for Quad HD)

• Performs One-time, Exhaustive Offline Rendering
• Offline: prepare all possible VR viewports, encodes as video stream
• Online: streams based on VR motion
• eliminates rendering/encoding overhead, scales to tens of users, at the cost of high mem, disk 

and network usage.



Outline

• Overview
• Firefly System Components
• Evaluation
• Summary



Offline Rendering Engine

• Populates the content DB by…
• Discretizing whole VR space into grids
• At each grid, renders a panoramic VR frame (360° view)

Client 
Projection



Offline Rendering Engine

• Tiles
• Independently transmitted & decoded
• Streams at tile level

• Finer fetching granularity
• Bandwidth saving

• Office vs. Museum
• Map size: 30 X 30 m
• Grid size: 5cm
• Size: 137GB vs. 99GB

Mega Frame

Color
Depth



How to fetch tiles?

• 6 degree of freedom (DoF)
• Translational
• Rotational
• (x, y, z, yaw, pitch, roll) -> tile x

• Fetch based on user’s VR motion
• End-to-end latency estimation: 3ms + 30ms + 34ms  +  3ms = 70ms

• Motion-to-photon latency requirement: 1000ms / 60FPS = 16.7ms

req      trans     decode     render



Understanding VR Motion Predictability

• VR user motion data collection
• 25 participants 
• Unity API (Office, Museum)
• 6-DoF motion enabled by Oculus Rift
• 6-DoF trajectory recorded
• 50 5-min VR trajectory traces



VR User Motion Profile 

Office

Museum



Understanding VR Motion Predictability

• A simple Linear Regression (LR) model (H=50ms, P=150ms)

• MAEtrans = 1.4cm, MAElat = 1.9°, MAElon = 7.6° (FoV 100° x 90°)

• Predict each dimension separately 

Translational Rotational

Lat
Lon



VR User Stationary Periods (SP)

• Within a 5-min VR session…
• 43 seconds of SP
• SP are short (~ 1s), but frequent
• Sudden movements makes prediction unavailable

• Moving – fetch based on prediction
• Stationary – fetch (best-effort) neighboring tiles 0 2 4 6 8 10 12

Duration (sec)

0
0.2
0.4
0.6
0.8

1

C
D

F

Translation
Rotation

TAKE AWAY: 
1. Users’ motion profile are diverse.
2. Good predictability for continuous VR motion.
3. Need to handle sudden movements.



System Architecture 

�����Offline Rendering Engine

�����AQC Content DB

L1 Cache

L2 Cache

L3 Cache

Tile Fetching�
Scheduler Motion 

Prediction  

Renderer

Decoding�
Scheduler  

Rendering 
Profiles

Object 
Store

Offline Foreground 
Object Profiling 

Tile Decoder

Tile Req. Queue

Tile Xmit Queue

User
Motion

Network BW from AP

Firefly Server

Fi
re

fly
Cl

ie
nt

 1

Client 2 Client 3 Client 4 …

1

1 Lightweight motion prediction for 
frequent viewport updates 

2

2 Interprets prediction results into a 
ranked list of tiles 

0

0 Offline rendering engine 
populates content DB

3 Adaptive Quality Control (AQC)

3

Features
• maximize the quality level, minimize 

stall and quality switch
• Fairness among users
• Fast pace
• Scale more users
• Optimization vs. heuristics



Adaptive Quality Control (AQC)

T = get_total_bw_from_AP() * λ
Q’[1..n] = Q[1..n]
B[1..n] = get_individual_bw_from_AP([1..n]) * λ
foreach user i:

while (bw_util(Tiles[i],Q’[i])≥B[i] and Q’[i] is not lowest):
Q’[i] = Q’[i] - 1

T = T – min(B[i], max(RESERVE, bw_util(Tiles[i], Q’[i])))
if (T < 0):

lru_decrease(Q’[1..n]) until (T≥0 or Q’[1..n] are lowest)
else:

lru_increase(Q’[1..n]) until (T≈0 or Q’[1..n] are highest)
Q[1..n] = Q’[1..n]

01
02
03
04
05
06
07
08
09
10
11
12

n: total number of users
T: total available bandwidth across all users
Q: users’ current quality levels (input & output)
Tiles: users’ to-be-fetched tile lists (input)
Q’: local copy of Q
B: individual user’s available bandwidth
λ: bandwidth usage safety margin
RESERVE: reserved bandwidth for each user
bw_util: estimate bandwidth requirement for the request



System Architecture 

�����Offline Rendering Engine

�����AQC Content DB

L1 Cache

L2 Cache

L3 Cache

Tile Fetching�
Scheduler Motion 

Prediction  

Renderer

Decoding�
Scheduler  

Rendering 
Profiles

Object 
Store

Offline Foreground 
Object Profiling 

Tile Decoder

Tile Req. Queue

Tile Xmit Queue

User
Motion

Network BW from AP

Firefly Server

Fi
re

fly
Cl

ie
nt

 1

Client 2 Client 3 Client 4 …

1

1 Lightweight motion prediction for 
frequent viewport updates 

2

2 Interprets prediction results into a 
ranked list of tiles 

0

0 Offline rendering engine 
populates content DB

3 Adaptive Quality Control (AQC)

3

4

4 Hierarchical cache, L3 disk, L2
main mem, L1 video mem

5

5 Hardware accelerated concurrent 
decoders, tile decoding

6

6 Tiles rendering, foreground object 
overlaying



Dynamic Foreground Objects

• Other users’ avatars, control panel, etc.

• Foreground objects are rendered locally real-time
• Pre-render not feasible
• Less rendering compared with complex backgrounds 
• Latency sensitive

• Adaptive object rendering
• Prepare lower quality by mesh simplification
• Dynamic decision



Outline

• Overview
• Firefly System Components
• Evaluation
• Summary



Implementation and Evaluation Setup

• Offline rending engine: Unity API and ffmpeg, C#/Python (LoC 1,500)

• Client: Android SDK (LoC 14,900)
• Tile decoding: Android MediaCodec
• Projection/rendering: OpenGL ES
• L1 cache: OpenGL frame buffer object (FBO)

• Server: Python (LoC 1,000)

• “Replayable” experiment (15 devices)
• SGS8 x 2, SGN8, MOTO Z3, SGS 10
• Raspberry Pi4 x 10
• Server colocates with AP in a VR lab
• Clients randomly distributed



Overall Performance Comparison

30 40 50 60 70
FPS

0
0.2
0.4
0.6
0.8
1

C
D
F

)LUHIO\
Furion�
3HUIHFW

0 3 9 12�
0

0.2
0.4
0.6
0.8
1

C
D
F

)LUHIO\�
Furion
3HUIHFW

6WDOO��VHF�PLQ�
19 23 27 31

CRF

0
0.2
0.4
0.6
0.8
1

C
D
F

)LUHIO\�
Furion
Perfect

Firefly vs. multi-user Furion vs. Perfect

• FPS, stall, content quality, motion-to-photon delay, inter-frame quality variation, intra-frame quality variation, fairness

• Overall, Firefly achieves good performance across all metrics

• 90%/99% of the time FPS ≥ 60/50

• Stall = 1.2 sec/min

• Bandwidth consumption (15 users) < 200 Mbps

• Quad HD (2560 x 1440) with average CRF = 23.8

…



Micro Benchmarks 

• Impact of AQC

• Impact of Bandwidth Reservation for stationary periods

• Impact of different viewport prediction strategy

• Impact of adaptive object quality selection

• …



Case Study - Adaptiveness to Number of Users

0 60 120 180 240 300
Time�(sec)

19

23

27

31

Av
J 

C
R

F

�
8VHUV�

��
8VHUV�

��
8VHUV�

��
8VHUV�

�
8VHUV�

0 60 120 180 240 300
Time�(sec)

50

55

60

65

70

Av
J 

FP
S

�
8VHUV�

��
8VHUV�

��
8VHUV�

��
8VHUV�

�
8VHUV�

The global available bandwidth is throttled at 200 Mbps

Average FPS Content Quality



Case Study - Adaptiveness to Available Bandwidth

0 60 120 180 240 300
Time�(sec)

19

23

27

31

Av
J 

C
R

F

100 Mbps
140 Mbps

7KURWWOHG 8QWKURWWOHG8QWKU�
RWWOHG

0 60 120 180 240 300
Time�(sec)

50

55

60

65

70

Av
J 

FP
S

100 Mbps
140 Mbps

7KURWWOHG 8QWKURWWOHG8QWKU�
RWWOHG

15 concurrent users

Average FPS Content Quality



Energy Usage and Thermal Characteristics

• After 25 mins of Firefly client usage, a fully charged smartphone
• Battery left: 92% ~ 96%
• GPU temperature < 50°C



Summary

• Firefly supports 15 VR users at 60 FPS using commodity smartphones and a single 
AP/server.
• Our design makes judicious decisions on

• partitioning the workload (offline vs. runtime, client vs. server)
• making the system adaptive to the available network/computation resources
• handling VR users’ fast-paced motion

• Core concepts of Firefly are applicable to other multi-user scenarios (AR/MR)


