Twizzler: a Data-Centric OS for Non-Volatile Memory


Daniel Bittman and Peter Alvaro, UC Santa Cruz; Pankaj Mehra, IEEE Member; Darrell D. E. Long, UC Santa Cruz; Ethan L. Miller, UC Santa Cruz / Pure Storage
Best Presentation Award Winner!


Byte-addressable, non-volatile memory (NVM) presents an opportunity to rethink the entire system stack. We present Twizzler, an operating system redesign for this near-future. Twizzler removes the kernel from the I/O path, provides programs with memory-style access to persistent data using small (64 bit), object-relative cross-object pointers, and enables simple and efficient long-term sharing of data both between applications and between runs of an application. Twizzler provides a clean-slate programming model for persistent data, realizing the vision of Unix in a world of persistent RAM.

We show that Twizzler is simpler, more extensible, and more secure than existing I/O models and implementations by building software for Twizzler and evaluating it on NVM DIMMs. Most persistent pointer operations in Twizzler impose less than 0.5 ns added latency. Twizzler operations are up to 13× faster than Unix, and SQLite queries are up to 4.2× faster than on PMDK. YCSB workloads ran 1.1–2.9× faster on Twizzler than on native and NVM-optimized SQLite backends.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {254358,
author = {Daniel Bittman and Peter Alvaro and Pankaj Mehra and Darrell D. E. Long and Ethan L. Miller},
title = {Twizzler: a {Data-Centric} {OS} for {Non-Volatile} Memory},
booktitle = {2020 USENIX Annual Technical Conference (USENIX ATC 20)},
year = {2020},
isbn = {978-1-939133-14-4},
pages = {65--80},
url = {},
publisher = {USENIX Association},
month = jul

Presentation Video