
1

Twizzler: A Data-Centric
OS for Persistent Memory

Daniel Bittman
Peter Alvaro Pankaj Mehra Darrell Long Ethan Miller

Center for Research in Storage Systems
University of California, Santa Cruz

Hardware Trends

2

~1-10 ms

sys_read

~100-300 ns ~1 us

Growing, becoming persistent Outdated interface Cannot compute on directly

Persistent data should be operated on directly and like memory

Global Object Space: Abstract References

Persistent data should be operated on directly and like memory

A B

C AB

Process 1

Process 2 A B

3

Existing approaches?

4

PMDK
No OS support

Data sharing is hard

Slow pointers

POSIX
Explicit persistence and data access

Multiple forms of data

Kernel involvement

mmap helps, but does not solve the
virtual memory problem

Twizzler’s goals
Little kernel involvement

Pervasive support (security, sharing)

Low overhead persistent pointers

Design Overview

5

application

musl* libc

libtwz

twix

Twizzler kernel

view management,
pointer translation,
consistency primitives

object & thread
management, trusted
computing base

* modified musl to change linux syscalls into function calls

Linux syscall
emulation

data
object

userspace
kernelspace

POSIX access
(read/write)

direct access
(memory-style)

metadata & FOT
management

create, delete, etc.
physical mapping

Persistent Pointers

6

Pointers may be cross-object: referring to data within a different object

object-id offset

FOT entry offset

64-bits

FOT Data

Object Layout

object ID or Name Name Resolver flags

Foreign Object Table

object ID or Name Name Resolver flags

1

2
...

1 <offset>

1 A rw-

2 B r--

O

FOT

A

FOT entry of >0 means
“cross-object”—points to a

different object.

Implications for Data and Sharing

7

Objects are self-contained

Persistent pointers are based on identity not location

Persistent pointers can be operated on generically

Objects can be easily shared

FOT entry offset

64-bits

object ID offset

128-bits

Pointers in Twizzler Pointers in PMDK

64-bit IDs require global
coordination or collision

management

Coordination free sharing

Consistency and Security

8

Cryptographically signed capabilities for access control

The kernel cannot create capabilities, but it can (must) verify them.

All enforcement must be done by hardware.

Implementation

More details available at twizzler.io

9

Evaluation Goals

Programmability, not performance (though, performance where we can get it)

10

Case Study: KVS

11

Index Data

Lookup returns
direct pointers

250 lines of simple C code is all you need

Data2

Index

Data1

r--

Evaluation

12

Dell R640 Servers with Intel Optane DC

Ported SQLite to Twizzler and to PMDK

Compared to SQLite “native” and SQLite “LMDB” (mmap)

Performance: SQLite

13

Performance: SQLite

14

Future Work: Distributed Twizzler

15

codedata

It’s a rendezvous problem

node

A

D

C

B

Explicit Relationships and the Object Graph

Conclusion

16

Operating systems must evolve to support
persistent data programming models directly

Cross-object pointers allow us to realize the
power of UNIX in a data-centric model

Twizzler provides benefits for both
NVM and traditional systems

Thank You! Questions?

17

