Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • SOUPS 2016
      • HotCloud '16
      • HotStorage '16
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Instructions for Authors and Speakers
    • Call for Papers
    • Call for Practitioner Talks
  • Sponsorship
  • About
    • Organizers
    • Help Promote!
    • Questions
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner
Industry Partner

help promote

USENIX ATC '16

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Understanding Manycore Scalability of File Systems
Tweet

connect with us

Understanding Manycore Scalability of File Systems

Authors: 

Changwoo Min, Sanidhya Kashyap, Steffen Maass, Woonhak Kang, and Taesoo Kim, Georgia Institute of Technology

Abstract: 

We analyze the manycore scalability of five widelydeployed file systems, namely, ext4, XFS, btrfs, F2FS, and tmpfs, by using our open source benchmark suite, FXMARK. FXMARK implements 19 microbenchmarks to stress specific components of each file system and includes three application benchmarks to measure the macroscopic scalability behavior. We observe that file systems are hidden scalability bottlenecks in many I/Ointensive applications even when there is no apparent contention at the application level. We found 25 scalability bottlenecks in file systems, many of which are unexpected or counterintuitive. We draw a set of observations on file system scalability behavior and unveil several core aspects of file system design that systems researchers must address.

Changwoo Min, Georgia Institute of Technology

Sanidhya Kashyap, Georgia Institute of Technology

Steffen Maass, Georgia Institute of Technology

Taesoo Kim, Georgia Institute of Technology

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Min PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us