Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Secure Deduplication of General Computations
Tweet

connect with us

Secure Deduplication of General Computations

Authors: 

Yang Tang and Junfeng Yang, Columbia University

Abstract: 

The world’s fast-growing data has become highly concentrated on enterprise or cloud storage servers. Data deduplication reduces redundancy in this data, saving storage and simplifying management. While existing systems can deduplicate computations on this data by memoizing and reusing computation results, they are insecure, not general, or slow.

This paper presents UNIC, a system that securely deduplicates general computations. It exports a cache service that allows applications running on behalf of mutually distrusting users on local or remote hosts to memoize and reuse computation results. Key in UNIC are three new ideas. First, through a novel use of code attestation, UNIC achieves both integrity and secrecy. Second, it provides a simple yet expressive API that enables applications to deduplicate their own rich computations. This design is much more general and flexible than existing systems that can deduplicate only specific types of computations. Third, UNIC explores a cross-layer design that allows the underlying storage system to expose data deduplication information to the applications for better performance.

Evaluation of UNIC on four popular open-source applications shows that UNIC is easy to use, fast, and with little storage overhead.

Yang Tang, Columbia University

Junfeng Yang, Columbia University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {190494,
author = {Yang Tang and Junfeng Yang},
title = {Secure Deduplication of General Computations},
booktitle = {2015 USENIX Annual Technical Conference (USENIX ATC 15)},
year = {2015},
isbn = {978-1-931971-225},
address = {Santa Clara, CA},
pages = {319--331},
url = {https://www.usenix.org/conference/atc15/technical-session/presentation/tang},
publisher = {USENIX Association},
month = jul,
}
Download
Tang PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us