Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Surviving Peripheral Failures in Embedded Systems
Tweet

connect with us

Surviving Peripheral Failures in Embedded Systems

Authors: 

Rebecca Smith and Scott Rixner, Rice University

Abstract: 

Peripherals fail. Yet, modern embedded systems largely leave the burden of tolerating peripheral failures to the programmer. This paper presents Phoenix, a semi-automated peripheral recovery system for resource-constrained embedded systems. Phoenix introduces lightweight checkpointing mechanisms that transparently track both the internal program state and the external peripheral state. These mechanisms enable rollback to the precise point at which any failed peripheral access occurred using as little as 6 KB of memory, minimizing both recovery latency and memory utilization.

Rebecca Smith, Rice University

Scott Rixner, Rice University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {190484,
author = {Rebecca Smith and Scott Rixner},
title = {Surviving Peripheral Failures in Embedded Systems},
booktitle = {2015 USENIX Annual Technical Conference (USENIX ATC 15)},
year = {2015},
isbn = {978-1-931971-225},
address = {Santa Clara, CA},
pages = {125--137},
url = {https://www.usenix.org/conference/atc15/technical-session/presentation/smith},
publisher = {USENIX Association},
month = jul,
}
Download
Smith PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us