Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Arrakis: The Operating System is the Control Plane
Tweet

connect with us

Arrakis: The Operating System is the Control Plane

Authors: 

Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, and Thomas Anderson, University of Washington; Timothy Roscoe, ETH Zurich
Best Paper at OSDI '14: Link to Paper

Abstract: 

Recent device hardware trends enable a new approach to the design of network server operating systems. In a traditional operating system, the kernel mediates access to device hardware by server applications, to enforce process isolation as well as network and disk security.We have designed and implemented a new operating system, Arrakis, that splits the traditional role of the kernel in two. Applications have direct access to virtualized I/O devices, allowing most I/O operations to skip the kernel entirely, while the kernel is re-engineered to provide network and disk protection without kernel mediation of every operation.We describe the hardware and software changes needed to take advantage of this new abstraction, and we illustrate its power by showing improvements of 2-5 in latency and 9 in throughput for a popular persistent NoSQL store relative to a well-tuned Linux implementation.

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us