Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Establishing a Base of Trust with Performance Counters for Enterprise Workloads
Tweet

connect with us

Establishing a Base of Trust with Performance Counters for Enterprise Workloads

Authors: 

Andrzej Nowak, CERN openlab and École Polytechnique Fédérale de Lausanne (EPFL); Ahmad Yasin, Intel; Avi Mendelson, Technion—Israel Institute of Technology; Willy Zwaenepoel, École Polytechnique Fédérale de Lausanne (EPFL)

Abstract: 

Understanding the performance of large, complex enterprise-class applications is an important, yet nontrivial task. Methods using hardware performance counters, such as profiling through event-based sampling, are often favored over instrumentation for analyzing such large codes, but rarely provide good accuracy at the instruction level.

This work evaluates the accuracy of multiple event-based sampling techniques and quantifies the impact of a range of improvements suggested in recent years. The evaluation is performed on instances of three modern CPU architectures, using designated kernels and full applications. We conclude that precisely distributed events considerably improve accuracy, with further improvements possible when using Last Branch Records. We also present practical recommendations for hardware architects, tool developers and performance engineers, aimed at improving the quality of results.

Andrzej Nowak, CERN openlab and École Polytechnique Fédérale de Lausanne (EPFL)

Ahmad Yasin, Intel

Avi Mendelson, Technion—Israel Institute of Technology

Willy Zwaenepoel, École Polytechnique Fédérale de Lausanne (EPFL)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Nowak PDF

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us