Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Pyro: A Spatial-Temporal Big-Data Storage System
Tweet

connect with us

Pyro: A Spatial-Temporal Big-Data Storage System

Authors: 

Shen Li and Shaohan Hu, University of Illinois at Urbana-Champaign; Raghu Ganti and Mudhakar Srivatsa, IBM Research; Tarek Abdelzaher, University of Illinois at Urbana-Champaign

Abstract: 

With the rapid growth of mobile devices and applications, geo-tagged data has become a major workload for big data storage systems. In order to achieve scalability, existing solutions build an additional index layer above general purpose distributed data stores. Fulfilling the semantic level need, this approach, however, leaves a lot to be desired for execution efficiency, especially when users query for moving objects within a high resolution geometric area, which we call geometry queries. Such geometry queries translate to a much larger set of range scans, forcing the backend to handle orders of magnitude more requests. Moreover, spatial-temporal applications naturally create dynamic workload hotspots1, which pushes beyond the design scope of existing solutions. This paper presents Pyro, a spatial-temporal bigdata storage system tailored for high resolution geometry queries and dynamic hotspots. Pyro understands geometries internally, which allows range scans of a geometry query to be aggregately optimized. Moreover, Pyro employs a novel replica placement policy in the DFS layer that allows Pyro to split a region without losing data locality benefits. Our evaluations use NYC taxi trace data and an 80-server cluster. Results show that Pyro reduces the response time by 60X on 1kmx1km rectangle geometries compared to the state-of-the-art solutions. Pyro further achieves 10X throughput improvement on 100mx100m rectangle geometries.

Shen Li, University of Illinois at Urbana-Champaign

Shaohan Hu, University of Illinois at Urbana-Champaign

Raghu Ganti, IBM Research

Mudhakar Srivatsa, IBM Research

Tarek Abdelzaher, University of Illinois at Urbana-Champaign

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {191564,
author = {Shen Li and Shaohan Hu and Raghu Ganti and Mudhakar Srivatsa and Tarek Abdelzaher},
title = {Pyro: A {Spatial-Temporal} {Big-Data} Storage System},
booktitle = {2015 USENIX Annual Technical Conference (USENIX ATC 15)},
year = {2015},
isbn = {978-1-931971-225},
address = {Santa Clara, CA},
pages = {97--109},
url = {https://www.usenix.org/conference/atc15/technical-session/presentation/li_shen},
publisher = {USENIX Association},
month = jul,
}
Download
Li PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us