Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
    • Co-located Events
      • HotCloud '15
      • HotStorage '15
  • Program
    • At a Glance
    • Technical Sessions
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Session
  • Participate
    • Call for Papers
    • Call for Practitioner Talks
    • Instructions for Participants
  • Sponsorship
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Participate
  • Sponsorship
  • About

sponsors

Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

USENIX ATC '15 button

Get more
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Request-Oriented Durable Write Caching for Application Performance
Tweet

connect with us

Request-Oriented Durable Write Caching for Application Performance

Authors: 

Sangwook Kim, Sungkyunkwan University; Hwanju Kim, University of Cambridge; Sang-Hoon Kim, Korea Advanced Institute of Science and Technology (KAIST); Joonwon Lee and Jinkyu Jeong, Sungkyunkwan University

Abstract: 

Non-volatile write cache (NVWC) can help to improve the performance of I/O-intensive tasks, especially write-dominated tasks. The benefit of NVWC, however, cannot be fully exploited if an admission policy blindly caches all writes without differentiating the criticality of each write in terms of application performance. We propose a request-oriented admission policy, which caches only writes awaited in the context of request execution. To accurately detect such writes, a critical process, which is involved in handling requests, is identified by application-level hints. Then, we devise criticality inheritance protocols in order to handle process and I/O dependencies to a critical process. The proposed scheme is implemented on the Linux kernel and is evaluated with PostgreSQL relational database and Redis NoSQL store. The evaluation results show that our scheme outperforms the policy that blindly caches all writes by up to 2.2× while reducing write traffic to NVWC by up to 87%.

Sangwook Kim, Sungkyunkwan University

Hwanju Kim, University of Cambridge

Sang-Hoon Kim, Korea Advanced Institute of Science and Technology (KAIST)

Joonwon Lee, Sungkyunkwan University

Jinkyu Jeong, Sungkyunkwan University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {190532,
author = {Sangwook Kim and Hwanju Kim and Sang-Hoon Kim and Joonwon Lee and Jinkyu Jeong},
title = {{Request-Oriented} Durable Write Caching for Application Performance},
booktitle = {2015 USENIX Annual Technical Conference (USENIX ATC 15)},
year = {2015},
isbn = {978-1-931971-225},
address = {Santa Clara, CA},
pages = {193--206},
url = {https://www.usenix.org/conference/atc15/technical-session/presentation/kim},
publisher = {USENIX Association},
month = jul,
}
Download
Kim PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us