Check out the new USENIX Web site. Check out the new USENIX Web site.

USENIX Home . About USENIX . Events . membership . Publications . Students
USENIX 2004 Annual Technical Conference, General Track — Abstract

Pp. 213–226 of the Proceedings

Network Subsystems Reloaded: A High-Performance, Defensible Network Subsystem

Anshumal Sinha, Sandeep Sarat, and Jonathan S. Shapiro, Johns Hopkins University


Traditionally, operating systems have used monolithic network stack implementations: implementations where the whole network stack executes in the kernel or (in microkernels) in a single, trusted, user level server. Code maintenance issues, ease of debugging, need for simultaneous existence of multiple protocols, and security benefit have argued for removing the networking implementation from kernel and dividing it into multiple user level protection domains. Previous attempts to do so have failed to deliver adequate performance. Given the advances made in both hardware (CPU, Memory, NIC) and micro-kernel design over the last decade, it is now appropriate to re-evaluate how these re-factored implementations perform, and to examine the reasons for earlier failures in greater detail.

Building on the primitives of the EROS microkernel, we have implemented two network subsystems: one a conventional, user mode, monolithic design and the other a domain-factored user level networking stack that restructures the network subsystem into several protection domains. We show that the restructuring maintains performance very close to that of the monolithic design, and that both designs compare favorably to a conventional in-kernel implementation. We discuss the issues faced in engineering the domain-factored implementation to achieve high performance, and present the quantitative evaluation of the resulting network subsystems

  • View the full text of this paper in PDF.
    The Proceedings are published as a collective work, © 2004 by the USENIX Association. All Rights Reserved. Rights to individual papers remain with the author or the author's employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research purposes. USENIX acknowledges all trademarks within this paper.

  • If you need the latest Adobe Acrobat Reader, you can download it from Adobe's site.
To become a USENIX Member, please see our Membership Information.

?Need help? Use our Contacts page.

Last changed: 25 June 2004 ch
Technical Program
USENIX '04 Home