Splitting the Difference on Adversarial Training

Authors: 

Matan Levi and Aryeh Kontorovich, Ben-Gurion University of the Negev

Abstract: 

The existence of adversarial examples points to a basic weakness of deep neural networks. One of the most effective defenses against such examples, adversarial training, entails training models with some degree of robustness, usually at the expense of a degraded natural accuracy. Most adversarial training methods aim to learn a model that finds, for each class, a common decision boundary encompassing both the clean and perturbed examples. In this work, we take a fundamentally different approach by treating the perturbed examples of each class as a separate class to be learned, effectively splitting each class into two classes: "clean" and "adversarial." This split doubles the number of classes to be learned, but at the same time considerably simplifies the decision boundaries. We provide a theoretical plausibility argument that sheds some light on the conditions under which our approach can be expected to be beneficial. Likewise, we empirically demonstrate that our method learns robust models while attaining optimal or near-optimal natural accuracy, e.g., on CIFAR-10 we obtain near-optimal natural accuracy of 95.01% alongside significant robustness across multiple tasks. The ability to achieve such near-optimal natural accuracy, while maintaining a significant level of robustness, makes our method applicable to real-world applications where natural accuracy is at a premium. As a whole, our main contribution is a general method that confers a significant level of robustness upon classifiers with only minor or negligible degradation of their natural accuracy.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.