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Abstract
The existence of adversarial examples points to a basic weak-
ness of deep neural networks. One of the most effective de-
fenses against such examples, adversarial training, entails
training models with some degree of robustness, usually at
the expense of a degraded natural accuracy. Most adversarial
training methods aim to learn a model that finds, for each class,
a common decision boundary encompassing both the clean
and perturbed examples. In this work, we take a fundamen-
tally different approach by treating the perturbed examples
of each class as a separate class to be learned, effectively
splitting each class into two classes: “clean” and “adversarial.”
This split doubles the number of classes to be learned, but at
the same time considerably simplifies the decision boundaries.
We provide a theoretical plausibility argument that sheds some
light on the conditions under which our approach can be ex-
pected to be beneficial. Likewise, we empirically demonstrate
that our method learns robust models while attaining optimal
or near-optimal natural accuracy, e.g., on CIFAR-10 we obtain
near-optimal natural accuracy of 95.01% alongside signifi-
cant robustness across multiple tasks. The ability to achieve
such near-optimal natural accuracy, while maintaining a sig-
nificant level of robustness, makes our method applicable to
real-world applications where natural accuracy is at a pre-
mium. As a whole, our main contribution is a general method
that confers a significant level of robustness upon classifiers
with only minor or negligible degradation of their natural
accuracy.

1 Introduction
Despite their success in a wide variety of challenging tasks,
Neural Networks are brittle when faced with small, impercep-
tible perturbations to their input; these are commonly referred
to as adversarial examples, which will, with high probability,
alter the neural network’s classification [10, 11, 25, 29, 41, 47,
59, 68, 69, 72, 88]. Early methods for defense against such
attacks were soon broken by stronger adversaries [4]; sub-

sequently, adversarial training emerged as one of the most
effective defenses [29, 45, 68, 96]. These adversarial training
techniques aim to learn robust models by solving a min-max
optimization problem.

While the inner maximization searches for worst-case ad-
versarial examples during training, and then augments the
training data with them, the outer minimization optimizes
across model parameters given natural and adv. examples.

Usually, in standard adversarial training methods, each gen-
erated adversarial example is annotated with the source class
label. Some works also attach a domain label (clean or adver-
sarial) for enhanced techniques, such as using an additional
domain classifier [44], adversarial examples detection [10,70],
etc. On the contrary, we hypothesize that adversarial exam-
ples generated from a given source class induce a totally
distinct class distribution. Therefore, in case one wishes to
avoid significant natural accuracy degradation, adversarial
training should be adjusted to take these additional classes
into account during training. Overall, we make the following
contributions:

• We introduce a novel approach for training robust mod-
els, which departs from the established paradigm of
attempting to learn a common decision boundary for
each natural class and its adversarially perturbed ver-
sion. Rather, we claim that for each class, the adversarial
perturbations induce a distinct distribution on the exam-
ples, so much so that it makes more sense to learn it
as a separate label, rather than attempting to shoehorn
it into the original one. Thus, our method doubles the
number of classes but ends up learning much simpler
decision boundaries; we provide both theory and experi-
ments in evidence of the efficacy of this trade-off (more
below). To our knowledge, this approach of “splitting the
difference” (which we formally dub Double boundary
adversarial training, DBAT), is completely novel in the
adversarial training setting.

• We perform a comprehensive battery of experiments
to demonstrate that our approach learns robust models
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Figure 1: Conceptual illustration of our method compared to standard adversarial training. (a) standard training decision boundary
(b) generation of adversarial examples that cross the decision boundary (c) standard adversarial training that tries to learn
boundaries for both clean and adversarial examples of each class (d) “splitting the difference” (our method). The dashed lines
represent the original classes’ learned boundaries. The solid lines represent the adversarial classes learned by DBAT. Standard
adversarial training learns complex shared boundaries for the two classes, while our method learns four much simpler boundaries.

while also achieving the highest reported natural accu-
racy, with a significant margin across different datasets.
This optimal or near-optimal natural accuracy makes
our method applicable for real-world applications (au-
tonomous vehicles, face recognition systems, healthcare
monitoring, and diagnosis, etc.) that cannot sacrifice nat-
ural accuracy for robustness. We stress that our aim is
not to compete with the state-of-the-art models on ro-
bustness, but rather a general-purpose technique for en-
dowing a classifier with a significant level of robustness,
while only incurring a minor degradation of natural ac-
curacy. 1

• In §4, we provide a rudimentary plausibility argument
to shed some theoretical light on the statistical trade-off
presented by DBAT: an increased number of classes to
learn, but with much simpler boundaries.

2 Related work
Since the discovery of adversarial examples by [68], a wide
range of defenses were proposed to enhance robustness.
Among these, adversarial training [29, 45] emerged as one of
the most successful methods to train robust models. Madry
et al. [45] proposed a technique, commonly referred to as
standard Adversarial Training (AT), to minimize the cross
entropy loss only on adversarial examples with respect to
the original class labels. Throughout the years, standard ad-
versarial training was enhanced in various ways [7] – with
changes in the regularization terms [28, 38, 40, 42, 44, 80, 96],
model ensemble [50, 72, 90], adversarial training with adap-
tive attack budget [15, 23], curriculum adversarial training
[9, 79, 97], utilizing out-of-distribution data [43], applying
Stochastic Weight Averaging (SWA) [36] to flatten the ad-
versarial loss landscape [14, 31], adapting adversarial train-
ing to model weights using Adversarial Weight Perturbation

1Our source code is available on Github.

(AWP) [73, 85], and combining adversarial training with data
augmentation techniques [32, 56, 57] and synthetically gener-
ated data [49, 61, 81, 89].

Other lines of research include theoretically certified ap-
proaches [16, 30, 53, 54, 63, 82, 84], computationally effi-
cient adversarial training [2, 62, 67, 83, 94], robust overfit-
ting and possible mitigations [58], semi/un-supervised adver-
sarial training [12, 75, 93], adversarial self-training and pre-
training [13, 37], incorporating domain adaptation alongside
adversarial training [44, 66], and robust model architecture
and custom building blocks [77, 86, 87, 95]. Specifically,
normalizer-free robust training (NoFrost) [77] suggested re-
moving all batch normalization (BN) layers from the network
during AT, but this approach was shown to have a negative
effect on the robustness against stronger attacks. 2

Some well-known methods include [96], who proposed the
method TRADES, which uses the Kullback-Leibler (KL) di-
vergence as a regularization term to push the decision bound-
ary away from the data.

Most related methods to DBAT are ones that suggest
changes to the regularization terms of adversarial training
(AT) with the goal of reducing natural accuracy degradation
in AT. A recent work by [20], named LBGAT, used an addi-
tional Mean Square Error (MSE) regularization term between
the logits of a natural model, alongside the robust. In [15],
authors suggested a work named Customized Adversarial
Training (CAT) which adaptively customizes the perturbation
level and the corresponding label for each training sample,
but was later shown to suffer from obfuscated gradients [64].
Another work [52] suggested Helper Adversarial Training
(HAT), which attempts to mimic the discriminative features
learned by standard trained networks to improve the accuracy
of clean samples with the goal of improving natural accuracy.
Recently, Universal Inverse Adversarial Training (UIAT) was
suggested by [24] to encourage the model to produce similar
output probabilities for an adversarial example and its “in-

2See: AutoAttack reduces accuracy of NoFrost.
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verse adversarial” counterpart, where the counterpart is gen-
erated by maximizing the likelihood in the neighborhood of
the natural example. Additionally, the authors of [78] recently
suggested Generalist, which consists of two base learners
separately trained within their respective fields and a global
learner that aggregates the parameters of base learners dur-
ing the training process. The parameters of base learners are
collected and combined to form a global learner at intervals
during the training process.

In contrast to all of the aforementioned methods, our work
suggests a fundamentally different approach. While other
methods treated the generated adversarial examples of a given
class as additional instances of that same class when learn-
ing the class boundaries (or even used only the adversarial
examples), our method acknowledges the fact that adversarial
examples induce additional class distributions on the source
dataset, which essentially doubles the number of classes in
the dataset, and therefore these examples should be treated as
additional classes of the dataset. We underline that our goal
is not to improve robust accuracy compared to the current
state-of-the-art in robustness, but rather to equip models with
a significant level of robustness, while keeping their natural
accuracy as high as possible.

3 Double Boundary Adversarial Train-
ing

In this section, we introduce our approach for training robust
models, Double Boundary Adversarial Training, DBAT. A
conceptual illustration is presented in Figure 1, and is sup-
ported empirically in Appendix D, where we test if such a case
is possible in real-world scenarios by calculating the distance
histogram of random examples to the decision boundary.

3.1 Motivation behind Double Boundary Ad-
versarial Training

Tsipras et al. [74] argued that robustness may be at odds with
natural accuracy, and usually the trade-off is inherent. We
concur that this indeed is typically the case when adversarial
examples are assigned to the same class as the natural exam-
ples they were generated from. However, when separating
the adversarial examples from their source, and generating
new parallel adversarial classes, we may be able to maintain
natural accuracy while still achieving significant robustness.

Therefore, we suggest an alternative approach to learning
robust models. Our main hypothesis is that natural examples
and their adversarial counterparts should not necessarily be
assigned to the same class. Instead, for each class, we learn
an additional counterpart adversarial class, which will be as-
signed to the adversarial examples. In essence, the number of
classes in the dataset is doubled.

In other words, instead of learning shared boundaries for
both natural examples and their adversarial counterparts,
where adversarial examples are expected to reside in the same
class as their natural counterparts, we suggest treating adver-
sarial examples as additional classes in the dataset.

While other methods can be thought of as modifying ex-
isting boundaries, DBAT learns boundaries for completely
new dynamically generated adversarial classes. We hypoth-
esize that this behavior creates a trade-off, where on one
hand, DBAT does not induce significant changes to existing
boundaries for natural classes in terms of complexity, and
keeps them smoother (as we empirically demonstrate on the
synthetic dataset experiment in §3.4 and Figure 2) - which
mitigates the drop in natural accuracy. But on the other hand -
it’s a more challenging task to learn completely new classes,
which in turn can impact robustness in some tasks.

We highlight that our aim is not to compete with the state-
of-the-art on robustness, but rather to find a general-purpose
technique that equips classifiers with a significant level of
robustness with only minor or neglectable degradation of
their natural accuracy.

3.2 Training procedure

During the training process, our goal is to learn additional
classes, one for each in the original class set. Given a dataset
S = {(xi,yi)}n

i=1 with C classes Y = {0,1, ...,C − 1}, we
define a new class space YDBAT = {0,1, ...,C − 1,C ,C +
1, ...,C · 2− 1} where class label C + k,k ≥ 0 is the label
of the adversarial examples generated for class k.

For each natural example (xi,yi), DBAT generates an ad-
versarial example x′i using targeted-PGD with a random target.
Then, the adversarial example is assigned with the adversar-
ial class yi + C which corresponds to the natural class yi
of the natural example. To summarize, for each natural ex-
ample (xi,yi), we generate adversarial example and assign it
the corresponding adversarial class, (x′i,yi +C ). Algorithm 1
describes the training procedure.
Remark. We note that targeted-PGD typically does not out-
perform untargeted-PGD when used with standard adversarial
training methods. That said, we argue that this observation
is not applicable to our setting. First, since we aim to learn
new generic adversarial classes, it stands to reason that class
diversity will be conducive to generalization. Therefore, using
random targeted-PGD mitigates the scenario where adversar-
ial examples generated by untargeted attacks for a given class
focus on small/specific regions of the manifold. Additionally,
using untargeted PGD, attacks can potentially be directed
to the adversarial class corresponding to the natural one. To
avoid the later, one can use untargeted PGD only on the origi-
nal classes, by adding a projection back to the original classes
during the optimization. Finally, we also experimented with
using Least-Likely targeted-PGD. See Appendix B for results
comparison.



Algorithm 1 DBAT Training

Input: S = {(xi,yi)}n
i=1 with C classes, and model fθ

Parameters: Batch size m, perturbation size ε, attack step
size τ, current iteration index k (zero-initialized), and learn-
ing rate α

repeat
Fetch mini-batch Xs = {x j}m

j=1, Ys = {y j}m
j=1

Initialize X
′
= {},Y ′

= {}
for j = 1 to m (in parallel) do

# Generate an adv. example
y′j =Select random label uniformly from {0,1, ...,C −
1,C , ...,C ·2−1}/{ j, j+C}
x′j = targeted-PGD(x j,y′j,ε,τ, fθ)
# Save the adv. example with the adv. class label
X

′
= X

′ ∪
{

x′j
}

Y
′
= Y

′ ∪
{

y j +C
}

end for
θ = θ−α ·∇θℓ(Xs ∪X

′
,Ys ∪Y

′
)

θ′ =
θ′ · k+θ

k+1
k = k+1

until stopping criterion is met

3.3 Inference procedure
At inference time, the model will output a probability vector v
of size |v|= 2 ·C which corresponds to the double number of
classes used during training. However, the dataset originally
has only C classes. Therefore, as our final class prediction,
we use the following formula:

v∗ = (max(v0,vC ), ...,max(vC−1,v2·C−1)), (1)

predicted class = argmax
0≤i≤C

v∗i . (2)

In other words, the final class prediction is taken as the
class with the maximum probability. If this class is one of the
adversarial classes, we return to its natural counterpart.

3.4 Illustrating DBAT’s Decision Boundaries
using a Synthetic Dataset

In Figure 2 we illustrate how DBAT can learn simpler and
smoother decision boundaries by applying it to a synthetic
dataset. We exhibit the decision boundaries for standard AT
and DBAT. The dataset is composed of isotropic Gaussian
blobs with a cluster standard deviation of 0.1 and two features
generated using the make_blobs from [51]. The number of
samples for each blob is 10,000. The adversary was given a
budget of ε = 1.2 optimized for six steps with a step size of
0.2. This enables some of the samples to cross the decision
boundary. As can be seen in Figure 2c, our method learns
much smoother and simpler decision boundaries as compared
to standard adversarial training in Figure 2b.

4 Theoretical analysis
We provide a theoretical plausibility argument for the em-
pirical success of our approach, in the following somewhat
idealized setting. We identify a phenomenon, which we term
the DBAT advantage, which, when applicable, justifies the
use of our technique.

Here we assume familiarity with the basic notions of PAC
learning, such as the sample error of a hypothesis, êrr(h), its
generalization error, err(h), and the Vapnik-Chervonenkis
(VC) dimension of a concept class; these may all be found,
e.g., in [3]. Suppose that one trains a k-multiclass classifier
by reducing it to k binary classification problems via the
standard 1-vs-all method (i.e., a separate in-class/out-class
binary classifier is trained for each of the k classes). Suppose
for simplicity that each of the classifiers is trained using the
same concept class H of VC-dimension V . If hi is the classifier
trained for the ith class on a sample of size n with sample
error êrr(hi), then the agnostic PAC bound [3, Theorem 4.9]
implies that with probability at least 1−δ,

err(hi)− êrr(hi) ≤ c
(√

(V + log(1/δ))/n
)
, (3)

where err(hi) is the generalization error and c > 0 is a univer-
sal constant.

Claim. The following form of (3) to holds for all of the k
classifiers, with probability at least 1−δ, simultaneously:

max1≤i≤k err(hi)− êrr(hi)≤ c
(√

(V + log(k/δ))/n
)

(4)

Proof. One sets δ′ = δ/k, which guarantees, with prob-
ability at least 1 − δ′, a generalization error of at most
c
√
(V + log(1/δ′))/n for each class individually, and hence,

by a union bound, for all classes simultaneously, with proba-
bility of at least 1− kδ′ = 1−δ. ■

But now suppose that we can express each h ∈ H as a
union of two simpler concepts: h = h1 ∪ h2, where h1,h2 ∈
H ′, and the latter has VC-dimension, say, V/2. In this case,
we can formulate the learning problem as a 2k-multiclass
classification problem, over the concept class H ′. By assigning
V/2 and 2k, the corresponding bound in (4) will now behave
as: √

(V/2+ log(2k/δ))n (5)

— which, for constant δ and large V , constitutes consid-
erable savings in sample complexity. The improvement in
sample complexity will be even more significant as we con-
sider ℓ-fold (rather than just 2-fold) unions of basic con-
cepts: h = h1 ∪ h2 ∪ . . .∪ hℓ, hi ∈ H ′. We will refer to this
phenomenon — in which decreasing hypothesis complexity
while increasing the number of classes reduces the overall
sample complexity — as the DBAT advantage, and discuss
it in greater detail below.



(a) Isotropic Gauss. blobs (boundary x1 = 0) (b) Standard AT decision boundary (c) DBAT decision boundaries

Figure 2: Synthetic dataset viz. on 2-classes dataset (a) of two 2D features each. Adversary: 6-step ℓ∞-PGD, ε = 1.2, δ = 0.2.

We will illustrate this phenomenon in some detail on
the natural example of halfspaces and Euclidean balls in
Rd . Since providing the requisite background on Vapnik-
Chervonenkis (VC) theory (in particular: shattering, VC-
dimension) is beyond the scope of the paper, we refer the
reader to [46].

Halfspaces.

Claim 1. If H ′ is the collection of all homogeneous (going
through the origin) halfspaces Rd , then the VC-dimension of
H ′ is d +1.

Proof. It is shown in [46, Example 3.2] that the VC-
dimension of general halfspaces in Rd is d+1. The restriction
that the halfspace contain the origin can be ensured by trans-
lating any shattered set {x1, . . . ,xd+1} by x1 to obtain the
shattered set {x2 − x1, . . . ,xd+1 − x1} of size d. This shows
that homogeneous hyperplanes have VC-dimension 1 less
than the general ones, i.e., d.

Claim 2. For H ′ as above (the collection of all homogeneous
halfspaces in Rd), the set of all 2-fold unions of concepts from
H ′ will have VC-dimension at least twice that of H.

Proof. For the lower bound, it suffices to find d points in
the positive orthant shattered by a set of 2d homogeneous
halfspaces H1 ⊂ H ′, as well as another set of d points in the
negative orthant shattered by another set of 2d homogeneous
halfspaces H2 ⊂ H ′, such that each h ∈ H1 labels the negative
orthant negative, while each h ∈ H2 labels the positive orthant
positive. Evidently, the set of pairwise unions of h1 ∈ H1 and
h2 ∈ H2 shatters the combined set of 2d points.

This example illustrates that 2-fold unions of simple clas-
sifiers can double the VC dimension of the hypothesis class.
In the more general case of ℓ-fold unions of hyperplanes, it
is known [19] that the VC-dimension is Ω(ℓd logℓ), so the
increase in sample complexity is even more significant. More-
over, [19] showed that this continues to be true for many other
kinds of Boolean aggregations: intersections, XORs etc.

Euclidean balls.

Claim 3. The VC-dimension of Euclidean balls in Rd is d+1.

Proof. This is a well-known fact, which we prove for com-
pleteness and also because the argument will be useful in the
sequel.

Both the upper and lower bounds on the VC-dimension of
balls rely on the fact that locally, these act like halfspaces: any
two finite sets separated by a halfspace can also be separated
by a ball of large enough radius (see Figure 4).

This argument is enough to establish the lower bound: any
set that is shattered by general halfspaces is also shattered
by Euclidean balls (see Figure 5), and we know from [46,
Example 3.2] that such a set can be as large as d +1.

For the upper bound, we invoke Radon’s theorem [46, The-
orem 3.4]: Any set S of d +2 points in Rd can be partitioned
into two subsets S1 and S2 such that the convex hulls of S1 and
S2 intersect. Such a partition will be called a Radon partition.
Suppose, for a contradiction, that the Euclidean balls shatter
some set S of d+2 points. Then there exists a Radon partition
of these into S1 and S2. But shattering means that some ball
B1 contains S1 and not S2, while another ball B2 contains S2
but not S1.

This means that S1 and S2 must be separable by a hyper-
plane. We conclude that the Euclidean balls cannot shatter any
more points that the halfspaces, which is at most d +1.

Claim 4. If H ′ is the collection of the Euclidean balls in Rd

(with VC-dimension d+1, as shown above), and H is the set of
all 2-fold unions of concepts from H ′, then the VC-dimension
of H is at least 2d

Proof. The argument proceeds by the same reduction from
balls to halfspaces employed in the proof of the lower bound
in Claim 3: any set that can be shattered by halfspaces can
also be shattered by balls. Now, as in the proof of Claim 2, we
construct two disjoint sets shattered by homogeneous halfs-
paces, consisting of d points each, in the positive and negative
orthants, respectively. Each is also shattered by balls, and by
dilating the points sufficiently far from the origin, we can
ensure that the 2d balls shattering the positive-orthant set are



(a) DBAT logits for natural examples and
original classes

(b) DBAT logits for adv. examples on
newly generated adv. classes

(c) DBAT logits for both natural and adv.
examples on all classes

(d) DBAT logits in two colors for natural
(blue) and adv. examples (orange).

Figure 3: Visualizing the logits of DBAT on CIFAR-10 test set using T-SNE [76] with two components on the model output for
(a) natural examples (b) adversarial examples with their new generated adversarial classes (c) combined 2-D visualization of both
natural and adversarial examples with all 20 classes (same color for natural class and its adversarial counterpart). (d) same plot as
in c, but colored in two colors to observe the separation between natural and adversarial examples. We can observe the strong
separation between classes obtained by DBAT, for both original and newly generated classes. Interestingly, adversarial and natural
examples almost don’t mix, and the majority of mismatches within each cluster are from the same domain (adversarial/natural).

Figure 4: Two finite sets
separated by a halfspace
can also be separated by a
ball of large enough radius.

Figure 5: A finite set that
is shattered by balls is also
shattered by halfspaces.

disjoint from their counterparts shattering the negative-orthant
set. Thus, the 2-fold unions of Euclidean balls shatter a set of
size 2d.

The above discussion was more of a proof-of-concept il-

lustration, since VC-dimension is not a particularly practical
tool in analyzing deep neural networks with a large number of
weights. In Appendix C, we show that the thrust of our point
continues to hold for the Rademacher complexity as well,
which is far more practical as far as providing finite-sample
generalization bounds [8, 91]. Using the analysis of [26], we
show that the Rademacher complexity of ℓ-fold unions grows
with ℓ roughly as

√
ℓ.

An additional qualification of our plausibility argument is
that adversarial loss is distinct from the 0-1 loss discussed
above. This is indeed a limitation of our analysis, although in
some instances it is possible to control adversarial risk via a
VC-type analysis [5, Theorem 2]. Finally, an implicit assump-
tion we have made above is that the adversarial perturbations
are non-adaptive: the adversary has fixed a (possibly, stochas-



tic) perturbation function in advance of seeing any data —
e.g., a neural network trained on a hold-out set, similar to
black-box settings. This lets us argue that the examples con-
tinue to be iid, under a new (unknown, perturbed) distribution.
This assumption, while not entirely realistic, is often made to
facilitate analysis [5].

Modulo these qualifications, the above discussion provides
evidence that when training k classifiers from a concept class
with high complexity, it may be advantageous to decompose
them into unions of simpler classifiers. The blow-up of the
number of classifiers is more than compensated in the reduc-
tion of classifier complexity.

5 Experiments
To emphasize the advantage of Double Boundary Adversarial
Training, we conduct extensive evaluations. The evaluation
process of DBAT includes white-box and black-box settings,
Auto-Attack, natural corruptions [35], unforeseen adversaries,
and ablation studies. All results are averaged over 5 runs while
omitting one standard deviation. These evaluations demon-
strate that the results obtained are not a consequence of what
is commonalty referred to as obfuscated gradients [4].

We compare our method to some of the most well-
known adversarial training methods – Standard AT [45], and
TRADES [96], alongside related work – LBGAT [73], Gener-
alist [78], CAT [15], HAT [52], and UIAT [24]. Our evalua-
tion starts with the common CIFAR-10 benchmark. In §5.4
and §5.6, we demonstrate the generalization of our method
to other datasets by experiments on CIFAR-100 [39] and
SVHN [48]. We use the WRN-34-10 [92] architecture for
CIFAR-10 and CIFAR-100, and the PreAct ResNet-18 for
SVHN. As suggested in [57], we combine Stochastic Weight
Averaging (SWA) [36], and Cutout [21] with window length
eight. We used "concatenated batches" as suggested by [65].
Attacks are generated using ℓ∞-PGD with ε = 8/255, and per-
turbation step size 1/255 for 10 attack steps. Full experiment
settings are detailed in Appendix A.

5.1 Threat model

Our trained model outputs a vector whose dimension is twice
the number of classes in the dataset. That is, one-half of the co-
ordinates corresponds to the original classes, while the second
half corresponds to the new adversarial classes. Therefore,
when considering the adversary’s capabilities, specifically
for untargeted white-box attacks, we need to explicitly de-
fine how the optimization is done. Recall that the aggrega-
tion/projection described in §3.3 takes place only at inference
time. Moreover, since the projection is not part of the compu-
tation graph, the defender can switch it to any desired metric
(max, mean, median, log, exp, etc.) at any time during infer-
ence, without updating the network. Therefore, there are three

possible adversaries:

First, the most basic adversary is one who does not utilize
any projection function while attacking.

Second, a more advanced (and perhaps most realistic) ad-
versary, is one who knows that the defender is utilizing a
projection function, but does not have inference time access
to the defender (e.g., a model was published at model zoos),
and needs to conjecture the projection function while attack-
ing.

Third, and most powerful adversary (although the least re-
alistic one), is one who can access not only the entire network
parameters but also real-time access to the defender’s system
and projection function at any given time during inference.

Table 1: Natural, PGD , and Auto-Attack (AA) robust accu-
racy against the fully adaptive white-box perfect knowledge
adversary (i.e., "Inference real-time access"). The attack is
an ℓ∞ attack on CIFAR-10 with WRN-34-10. Similar to our
method, the presented results are for models that do not uti-
lize additional data during training. The Natural method
refers to a model trained using standard training under the
same hyper-parameters settings. Green represents the best
natural accuracy among the robust models. Orange represents
the second-best natural accuracy among the robust models.
The range alongside the green arrow represents the natural
accuracy improvement compared to the other methods.

METHOD NATURAL ACC. PGD AA

DBAT (OURS) 95.01 (↑4–10.1%) 54.61 40.08
AT 85.10 54.46 51.52
TRADES 84.92 55.56 53.08
LBGAT 88.22 54.31 52.86
GENERALIST 91.03 56.92 52.91
HAT 84.86 52.30 48.85
UIAT 85.01 54.63 49.11
CAT 89.61 73.38 34.78

NATURAL 95.43 0 0

Throughout the paper, we compare against the most power-
ful adversary. In §5.8, we present additional experiments to
demonstrate how different access to the inference time pro-
jection function affects the adversary’s strength (i.e., the at-
tacker’s ability to degrade robust accuracy). As for black-box
attacks analysis, we evaluate against two types of adversaries:
naturally trained surrogate models, and other adversarially
trained models. For natural corruptions, the corruptions are
generated independently from the trained model.



(a) ℓ2-PGD (b) ℓ1-PGD (c) CW∞

(d) ℓ2-DeepFool (e) ℓ∞-DeepFool

Figure 6: Robustness against unforeseen (a) ℓ2 PGD adversary (b) ℓ1 PGD adversary (c) CW∞ adversary on CIFAR-10.

5.2 White/Black-box and Auto-Attack Evalua-
tion

White-box/Black-box PGD Robustness. We present
DBAT’s l∞-PGD white-box and black-box results compared
to a variety of adversarial training methods. Attacks are gen-
erated with ε = 8/255, and perturbation step size 1/255 and
10 attack steps. On CIFAR-10, DBAT’s results are in line
with the SOTA methods under black-box attacks. For PGD
white-box attacks, DBAT achieves significant PGD robustness
(e.g., 54.25% with PGD1000), similar to the other methods,
with near-optimal natural accuracy of 95.01% (compared to
95.43% for a naturally trained model). Additionally, in Figure
3 we visually present the strong class separation obtained
by DBAT for the original classes, the newly generated adver-
sarial classes, and the combination of all the 20 classes for
CIFAR-10.

Auto-Attack Evaluation. We evaluate DBAT on Auto-
Attack, an ensemble of diverse attacks: APGD, APGD-DLR
[18], Square [1], and FAB [17]. As described in Table 1, our
method reaches near-optimal natural accuracy (compared to
a naturally-trained model) while still maintaining significant
robustness when tested against AA. We note that Auto-Attack
results are not as good as PGD results. We ascribe the dif-
ference to the adversarial classes that were generated using
ℓ∞-PGD and are therefore oriented towards PGD adversaries.
It can be empirically evidenced in the “unforeseen attacks”
(Figure 6), where our results on attacks such as C&W are

good, but our results on the different PGD adversaries with
different norms (ℓ∞, ℓ2, ℓ1) are better.

5.3 Unforeseen Adversaries Robustness
To further demonstrate that our method does not suffer from
false robustness, we test it against different adversaries that
were not observed during training, including ℓ2-PGD, ℓ1-PGD,
ℓ∞-DeepFool, and ℓ2-DeepFool [47] implemented by Fool-
box [55], and CW∞ [11]. We applied white-box attacks, with
common attack budgets of 12 for ℓ1-PGD, 0.5 for ℓ2-PGD,
0.02 overshoot for DeepFool, and 8/255 for CW∞. Results
are visualized in Figure 6. Our method significantly improves
results (except for CW∞) , even on unforeseen adversaries.
DBAT improves ℓ2-PGD by up to 14%, ℓ1-PGD by up to 20%,
ℓ2-DeepFool by up to 10%, and ℓ∞-DeepFool by up to 16%.

Feature Adversaries. We demonstrate the effectiveness of
DBAT to so-called “adaptive adversaries”: those that try to cir-
cumvent our defense by ignoring the projection function dur-
ing the optimization process [71], and show that they cannot
evade our defense. To do so, we tested DBAT on CIFAR-10
against feature and logit-level adversaries: Kullback–Leibler
divergence (KLD) attack on the probabilities vectors [96], l2
logit-matching attack [71] on adversarial examples and their
corresponding natural examples, and lastly, a feature adver-
sary suggested in [60]. We used ε = 8/255, δ = 1/255, and
ran for 500 iterations. Results are presented in Table 2. DBAT
presents notably impressive and strong results against feature



and logit-level adversaries. We also tried attacking the inner
layers (and combinations of layers), in addition to attacking
the feature representation layer, but we noticed it did not im-
prove the attack success rate. These results also support our
claim in §5.1, that an adaptive attacker will benefit from using
the projection function in the attack optimization.

Table 2: CIFAR-10 results against feature and logit level ad-
versaries.

Adversary Robust Accuracy

KLD 85.9
l2 Logit Matching 84.5

Feature Adversary [60] 86.8

Figure 7: CIFAR-10C accuracy comparison results between
different methods over all 18 natural corruption types, includ-
ing noise, blur, weather, and digital categories.

5.4 Natural Corruptions Robustness

We demonstrate the effectiveness of DBAT when facing natu-
ral corruptions, as proposed by [35]. This corruptions bench-
mark dataset consists of 18 diverse corruption types. It covers
noise, blur, weather, and digital categories. As the researchers
claimed, research that improves performance on this bench-
mark should indicate general robustness gains, as the corrup-
tions are varied and great in number. These corruptions each
have five different levels of severity. To test DBAT, we use
the CIFAR-10-C and CIFAR-100C corruptions benchmarks.
Note that the corruptions are model-independent. As demon-
strated in Figures 7 and 8, our method outperforms the other
methods by a significant margin on all corruption types.

Figure 8: CIFAR-100C accuracy comparison results between
different methods over all 18 natural corruption types, includ-
ing noise, blur, weather, and digital categories.

CIFAR-10C results. When compared to the second-best
performing method, DBAT obtains an average improvement
of 7.96% across all corruption types, and a maximum im-
provement of up to 35.19%.

CIFAR-100C results. When compared to the second-best
performing method, DBAT obtains an average improvement
of 10.82% across all corruption types, and a maximum im-
provement of up to 25.75%.

5.5 Clean vs. Robust Accuracy Trade-off
Clean and robust accuracy trade-off. Originally, the clean
and adversarial classes were equally weighted during train-
ing. Meaning, given that λ is the weighting factor for the
adversarial classes, we set λ = 1 in our experiments.

In the following experiment, we run an extensive evaluation
to show how the trade-off between natural and robust accuracy
changes as we weigh the loss on the natural and adversarial
classes differently, i.e., how the natural and robust accuracy
changes as we change the values of λ. We use CIFAR-10
with the same experiment settings described above. We report
Auto-Attack (AA) results, as well as natural accuracy results.
In Figure 9 and Table 3, we plot DBAT’s and TRADES’s
trade-off between natural and Auto-Attack robust accuracy as
the weighting factor, λ, varies the trade-off between the natu-
ral and adversarial classes. For DBAT, we compare against the
fully adaptive white-box perfect knowledge adversary (i.e.,
"Inference real-time access"). Not surprisingly, as we increase
λ, clean accuracy decreases while robust accuracy increases,
and vice-versa. However, as can be seen, the changes in nat-
ural accuracy for DBAT are relatively small, even though λ



Figure 9: Natural and AutoAttack robust accuracy trade-off,
for DBAT and TRADES on CIFAR-10, as we vary the hyper-
parameter λ that controls the weight we put on the natural
and adversarial classes. The numbers on the graph represent
the value of λ for the specific trade-off.

was changed between a wide range of 0.1 and 8.

Table 3: DBAT’s natural and Auto-Attack accuracy trade-off
on CIFAR-10 as the weighting factor λ varies between 0.1
and 8 (where 1 is the default value used in the experiments).

λ Natural Auto-Attack

0.1 96.81 18.40
0.2 96.58 20.50
0.5 95.70 34.56
1 95.01 40.08
2 93.52 42.97
4 93.24 44.47
6 92.76 44.80
8 92.56 45.91

We also noticed that when increasing λ beyond a value of
10, the model started to diverge. We attribute this behavior
to the fact that we are over-weighting dynamically newly
generated classes, which in turn affects the model’s ability to
converge. We noticed that a simple warm start of λ can help
to some extent. As for TRADES, we’ve noticed that as we
decrease λ below 0.1, TRADES was not able to learn robust
models.

Overall, we’ve demonstrated how reducing the trade-off
parameter λ, TRADES was not able to match DBAT’s clean
accuracy without losing robust accuracy almost entirely. This
is another empirical evidence of DBAT’s unique ability to
learn models with optimal or near-optimal natural accuracy
and a significant level of robustness.

F1-robust. To further demonstrate that DBAT’s robust-
natural trade-off is indeed good compared to other methods,
we adopt the recently proposed metric, F1-robust, suggested
by [44] which was specifically designed as a balanced mea-
surement for robust and natural accuracy. Results are pre-
sented in Table 4.

Table 4: Results on CIFAR-10 using the recently proposed
F1-robust metric specifically designed as a balanced measure-
ment for robust and natural accuracy. Higher is better.

Defense F1-Robust

DBAT 0.710
AT 0.657
TRADES 0.659
LBGAT 0.670
Generalist 0.685
HAT 0.622
UIAT 0.645

5.6 Generalization Across Datasets
To check the generalization of our approach to different
datasets, we evaluate DBAT on SVHN and CIFAR-100. We
present Auto-Attack results in Table 5. As presented in Table
5, our method reaches optimal (for SVHN) and near-optimal
(for CIFAR-100) natural accuracy on the different datasets
while still maintaining significant robustness even against
Auto-Attack.

SVHN evaluation. For SVHN, DBAT achieves an improve-
ment of 3-5% under black-box attacks, When tested against
white-box PGD attacks, DBAT achieves significant PGD ro-
bustness of 53.40% (PGD20), similar to other popular AT
methods. Additionally, DBAT reaches a natural accuracy of
96.86%, compared to 96.85% for a naturally trained model
under the same architecture and settings. Meaning, DBAT ex-
hibits no reduction in natural accuracy, while also achieving
significant robust accuracy under various strong adversaries.

CIFAR-100 evaluation. For CIFAR-100, DBAT achieves
an improvement of 6-12% under black-box attacks. When
tested in PGD white-box attacks, DBAT still achieves sig-
nificant PGD robustness, e.g., 29.95% with PGD20, similar
to other popular AT methods. We note that Auto-Attack ro-
bustness is lower than the other methods, possibly due to the
greater diversity in the dataset and the small number of ex-
amples in each class, which makes it more difficult to learn
new adversarial class boundaries. DBAT achieves significant
Auto-Attack robustness . Moreover, DBAT reaches a natu-
ral accuracy of 75.18%, compared to 79.30% for a naturally



Table 5: Natural, PGD , and Auto-Attack (AA) robust accu-
racy against the fully adaptive white-box perfect knowledge
adversary (i.e., "Inference real-time access"). The attack is
an ℓ∞-PGD attack on SVHN and CIFAR-100. Similar to our
method, the presented results are for models that do not uti-
lize additional data during training. The Natural method
refers to a model trained using standard training under the
same hyper-parameters settings. Green represents the best
natural accuracy among the robust models. Orange represents
the second-best natural accuracy among the robust models.
The range alongside the green arrow represents the natural
accuracy improvement compared to the other methods.

DATASET METHOD NATURAL ACC. PGD AA

CIFAR-100

DBAT 75.18 (↑12.2–18.5%) 27.22 18.17
AT 56.73 28.45 24.12
TRADES 58.24 29.70 24.90
LBGAT 60.64 34.84 29.33
GENERALIST 62.97 29.49 23.96
HAT 58.73 27.92 23.34
UIAT 59.55 30.81 25.73
CAT 62.84 - 16.82

NATURAL 79.30 0 0

SVHN

DBAT 96.86 (↑2.8–6.8%) 49.31 40.49
AT 89.90 49.45 45.25
TRADES 90.35 54.13 49.50
LBGAT 91.80 63.38 40.83
GENERALIST 94.11 55.29 45.41
HAT 92.06 57.35 52.06
UIAT 93.28 58.18 52.45

NATURAL 96.85 0 0

trained model under the same settings. Compared to the other
methods, DBAT improves natural accuracy by 14.5-18.5%.

5.7 Ablation Studies
DBAT core components. We demonstrate the performance
gain obtained by our method by removing the two parts that
are not at the core of DBAT – SWA and Cutout. We use the
CIFAR-10 dataset, with WRN-34-10, and report the Auto-
Attack (AA) results when removing SWA and Cutout. When
removing SWA and Cutout we observe that their total con-
tribution to DBAT is 2.21% in natural accuracy and 3.55%
in robust accuracy. Additionally, in Table 7 we present the
results using different aggregation functions (sum and mean).
Another study that tests the effect of training with targeted ver-
sus untargeted PGD is presented in Appendix B. Altogether,
we conclude that the majority of the gain in natural and robust
accuracy is obtained by DBAT.

Numerical instability. The loss function calculates the log
over the max on the Softmax probabilities. This additional
log may cause numerical instability, as discussed in Appendix

G.2 of [71]. To demonstrate that our method does not suf-
fer from numerical instability, we conducted two additional
experiments:

• We replaced the max with LogSumExp (LSE) which
should be more stable. Changes in results were within a
standard deviation of ∓0.22 from the original reported
results.

• We ran both AA and PGD-20 with 5 random restarts
(within epsilon) and calculated mean and std. All results
were within a standard deviation of ∓0.2.

Model complexity and training time overhead. We ac-
knowledge the fact that DBAT presents additional complexity
to the model. However, keeping in mind that only the output
of the last final fully connected layer is doubled, the additional
model complexity is minor in most of the cases. Specifically,
with WRN-32-10 on CIFAR-100, DBAT introduces 64k ad-
ditional parameters, which sums up to an additional 0.13%
of the total parameters. Additionally, we also analyzed the
training time overhead of our approach compared to the well-
known TRADES. Overall, DBAT has a minor overhead of up
to 2-3% for models with class numbers ranging from 10 to
100.

5.8 Adaptive vs. Non-adaptive Attacks
In §5.1 we stated that the most powerful white-box adversary
is one who has access to both model parameters and to the
projection function at any given time during inference. This
adversary, which we used throughout the paper and termed
inference real-time access adversary, possesses all possible ca-
pabilities and may also be thought of as a “Perfect-Knowledge
Adversary”. That is, the adversary has access to the model
parameters, and more importantly, to the projection function
the defender is using at each given time during inference —
and thus can utilize the same projection function while at-
tacking. Throughout the paper, we compare primarily against
this unrealistically powerful adaptive adversary. Although
this adversary is not the most realistic one, here we wish
to demonstrate that this kind of adversary is indeed the most
powerful adversary. To do so, we compare the results with two
different white-box adversaries. The first adversary will be
referred to as the model parameters adversary. It is assumed
to possess access to the model parameters, but not to the infer-
ence projection function — meaning that the adversary can
optimize the network parameters, but is not utilizing the infer-
ence projection function (e.g., max) in the attack optimization
process. The model parameters adversary illustrates how the
attack success rate is influenced by the attacker’s adaptive
knowledge (or lack thereof) about the defender’s projection
function. The second, most realistic adversary, termed model
parameters + projection function access adversary, knows
that the defender is utilizing a projection function, but does



Table 6: Natural and Auto-Attack (AA) ℓ∞ robustness on CIFAR-10, CIFAR-100 and SVHN, against adversaries with different
capabilities. Model parameters + projection function access refers to the adversary capabilities to access both model parameters
and inference projection function. inference real-time access refers to the adversary that can access not only to the entire network
parameters but also to the defender’s system and projection function at any given time during inference. model parameters refers
to an adversary that gains access only to the model parameters, but not to the inference time projection function.

Dataset Adversary access capabilities Natural Acc. Robust Acc.

CIFAR-10
Model parameters access

95.01
50.31

Model parameters + projection function access 47.82
Inference real-time access (model params. + inference-time access to projection func.) 40.08

CIFAR-100
Model parameters access

75.18
23.16

Model parameters + projection function access 20.87
Inference real-time access (model params. + inference-time access to projection func.) 18.17

SVHN
Model parameters access

96.86
56.60

Model parameters + projection function access 48.58
Inference real-time access (model params. + inference-time access to projection func.) 40.49

Table 7: Natural and Auto-Attack (AA) results against the
strongest, inference real-time access adversary, using two
additional aggregation functions: sum and mean.

Agg. function Acc. CIFAR-10 SVHN CIFAR-100

Sum
Natural 95.01 96.85 75.07

AA 39.81 36.00 18.08

Mean
Natural 95.01 96.85 75.07

AA 39.93 35.84 18.49

not have inference-time access to the defender’s choices at any
given time during inference, and therefore has to conjecture
the projection function from common projection functions
(mean, softmax, maximum, sum, etc.) while attacking. Both
adversaries — model parameters and model parameters +
projection function access — are more realistic than the infer-
ence real-time access adversary, since the projection function
is not part of the optimization. For example, the trained model
can be published at model zoos, while the projection function
does not. Alternatively, the defender can randomize or change
the projection function at any time during inference.

Table 6 presents results under the three adversaries’ settings.
As can be seen, since the model parameters adversary does
not utilize the knowledge about the projection function, the
attack against DBAT becomes much less effective, and as
a consequence the attack success rate decreases, i.e., model
robustness increases.

6 Conclusion
In this paper, we demonstrate the advantage of treating the
clean and adversarially perturbed examples as belonging to

separate classes, instead of insisting that the classifier “stretch”
a single class to accommodate them both. With this new idea
in mind, we proposed Double Boundary Adversarial Training
(DBAT). Our extensive evaluation illustrates the ability of
DBAT to achieve state-of-the-art results under various tasks
such as black-box PGD attacks, natural corruptions robust-
ness, and unforeseen adversaries (e.g., ℓ2-PGD, ℓ1-PGD, and
DeepFool). That said, our aim is not to compete with the
state-of-the-art in robustness across the board. Rather, we
wish to equip models with a significant level of robustness,
while only incurring a minor or negligible degradation to
their original natural accuracy. Therefore, the main benefit of
DBAT is its ability to reach optimal or near-optimal natural
accuracy while achieving significant robustness, even against
strong adversaries. This ability makes DBAT applicable for
real-world applications (e.g., healthcare, autonomous vehi-
cles, and security systems) that cannot sacrifice much of their
natural accuracy.

7 Ethical Considerations
The existence of adversarial examples points to a basic weak-
ness of deep neural networks. With the deployment of AI
in safety-critical systems, such as security systems, medical
diagnosis, and autonomous driving, it is at a premium to build
systems that are robust, at least to some extent, against such
attacks. However, the gain of robustness is usually at the
expense of the systems’ natural accuracy. In order for real-
world, safety-critical systems to adopt robust models, we need
to make sure that the degradation in the natural accuracy is
minor. For this reason, we suggested DBAT, which achieved
a significant level of robustness without sacrificing much of
the natural accuracy, and hope that it will help real-world



applications adopt robust models.
Having said that, DBAT still has its limitations: adversarial

training is an expensive training method that requires extra
computations when compared to vanilla training. Moreover,
DBAT achieves significant level of robustness, but it does not
eliminate it completely, and one should take it under consid-
eration when deploying such methods.
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A Full Experimental Setup Details
We conduct our experiments on CIFAR10, CIFAR100 [39]
and SVHN [48]. We use the wide residual network (WRN-
34-10) [92] architecture for CIFAR-10 and CIFAR-100, and
the PreAct ResNet-18 [33] for SVHN. Following [58], we
apply early-stopping based on a validation set. The batch
size is set to 128, weight decay is set to 7e−4. We train the
model for 200 epochs with an initial learning rate of 0.1.
For CIFAR datasets, the learning rate is decayed by a factor
of 10 at iterations 50 and 150. For SVHN, the learning rate
is decayed by a factor of 10 at iterations 50 and 75. Natu-
ral images are padded with 4-pixel padding with 32-random
crop and random horizontal flip. Furthermore, all methods
are trained using SGD with momentum 0.9. We combine
Stochastic Weight Averaging (SWA) [36], exponential mov-
ing average on the model weights during training steps, within
our training process. SWA was shown to be effective in train-
ing robust models [14,57], due to its temporal ensemble effect,
and the ability to smooth the weights.

B Training with Targeted vs. Untar-
geted PGD

As previously stated, using targeted-PGD on random target la-
bels helps to better generalize the adversarial classes. In Table
8 , we show the comparison of the results between random

targeted PGD (T-PGD), Least-Likely (least likely label based
on the model decision) targeted PGD, and untargeted PGD.
Using Least-Likely T-PGD achieves optimal natural accuracy,
at the cost of a decrease in robust accuracy. Using untargeted
PGD, we experience better AA robustness, at the cost of a
decrease in natural accuracy.

Table 8: Natural accuracy and Auto-Attack robust accuracy
against the strongest adversary, Inference real-time access, on
CIFAR-10.

ATTACK TYPE NATURAL ACC. AA

RANDOM T-PGD 95.01 40.08

LEAST-LIKELY T-PGD 95.67 34.42

UNTARGETED PGD 92.18 44.13

Finally, we conducted a case study experiment on CIFAR-
10 for two other training methods, AT [45] and TRADES [96],
in order to test if random targeted PGD can help improve
other methods’ results as much as it helped our method. For
AT, Auto-Attack robust accuracy was 45.94%, a decrease of
5.58% in robustness, with a small improvement of almost
3% in natural accuracy. For TRADES, Auto-Attack robust
accuracy was 52.32%, a decrease of 0.76% in robustness, with
a small improvement of 1.07% in natural accuracy. We can
conclude that random targeted PGD degrades robustness for
the other tested methods with only marginal improvement in
natural accuracy.

C Rademacher Analysis
Rademacher complexity. As mentioned in Section 3.4, the
VC-dimension is impractical in analyzing deep neural net-
works with a large number of weights. We will now argue that
the thrust of our point continues to hold for the Rademacher
complexity as well, which is far more practical as far as pro-
viding finite-sample generalization bounds [8,91]. We assume
a basic familiarity with this notion and refer the reader to [46]
for background. For a brief recap, if F is a collection of func-
tions mapping some set Ω to R, and X1, . . . ,Xn is sampled iid
from some distribution on Ω, then the (empirical) Rademacher
complexity is defined by

Rn(F ;X1, . . . ,Xn) = E
σ

sup
f∈F

1
n

n

∑
i=1

σi f (Xi), (6)

where expectation is over the σi, which are iid Rademacher
variables (i.e., P(σi = 1) = P(σi =−1) = 1/2). It is a classic
fact [46, Theorem 3.5] that the Rademacher complexity upper-
bounds the generalization error: if X1, . . . ,Xn is an iid sample,



then

err(h)≤ êrr(h)+Rn(H;X1, . . . ,Xn)+3

√
log(2/δ)

2n
(7)

holds uniformly over all h ∈ H with probability3 at least 1−δ.
It is always the case [22, Theorem 3.2, Theorem 4.3] that

Rn(H;X1, . . . ,Xn)≤ c

√
V
n
, (8)

where V is the VC-dimension of H and c is a universal con-
stant. Observe that the left-hand side of (8) is sensitive to the
sampling distribution of Xi (and can be arbitrarily small for
very concentrated distributions), while the right-hand side is
distribution-free — and hence the bound in (8) can be rather
loose. In situations where the VC-dimension is very large,
the more delicate Rademacher analysis gives much tighter
bounds than VC theory [8, 91].

We will make use of a recent Rademacher ℓ∞ vector con-
traction result:

Theorem 1. [27] Let F be a Rℓ-valued function class, such
that the coordinate projection class is denoted by Fj = {w 7→
f (w) j | f ∈ F}, for 1 ≤ j ≤ ℓ. Let (φt)t≤n be a sequence of
functions such that each φt is L-Lipschitz with respect to ℓ∞

norm. For any α > 0, there exists a constant Cα > 0 such that
if |φt( f (w))|∨ || f (w)||∞ ≤ B, then it holds for any sequence
w = (w1, · · · ,wn),

Rn(φ◦F |w) := Eσ sup
f∈F

1
n

n

∑
t=1

σtφt( ft(wt))

≤CαL
√
ℓ ·max

i∈[ℓ]
sup

a=(a1,...,an)

Rn(Fi|a)·

log
3
2+α

(
Bn

maxi∈[ℓ] supa=(a1,...,an) Rn(Fi|a)

)
.

We observe, as in [6, Theorem 5.1], that max(x1, . . . ,xℓ) is
a 1-Lipschitz function with respect to the ℓ∞ norm. It follows
(taking α = 1/2 and specializing the argument of [6, Theorem
5.1] to our simpler case), that if H∪ℓ is the ℓ-fold union of
H — that is, every h′ ∈ H∪ℓ can be expressed as the union of
some ℓ members of H — then we have:

Rn(H∪ℓ;X1, . . . ,Xn)≤C
√
ℓmax

i∈[ℓ]
R̄n(H) log2 n

R̄n(H)
, (9)

where C is a universal constant and R̄n(H) :=
sup(x1,...,xn)∈Ωn Rn(H;x1, . . . ,xn). Since the Rademacher
complexity of the ℓ-fold union grows roughly as

√
ℓ, it may

often be advantageous to re-analyze complex hypotheses
as unions of simple ones — just as we concluded for the
VC-dimension in §4. Thus, we can apply (7) to the two

3where the randomness is over the sample Xi

competing approaches: (i) when learning ℓk “simple” clas-
sifiers from the class H, and (ii) when learning k “complex”
classifiers from the class H∪ℓ. Ignoring logarithmic factors,
and treating δ as fixed, we can compare the bound of order
roughly Rn(H)+

√
log(ℓk)/n when splitting the classifiers

(the ℓk inside the log is from the union bound) and roughly√
ℓRn(H) +

√
log(k)/n without splitting (there are only k

classes but each incurred a
√
ℓ factor from (9)). For simple

hypothesis classes H (i.e., those with a low Rademacher
complexity), this again demonstrates the advantage of
splitting.

D Distance to Decision Boundary
In the following experiment, we wish to demonstrate that
the conceptual illustration that we’ve drawn can exist in real
datasets. To do so, we need to demonstrate that most clean
examples are relatively close to the decision boundary, in a
distance that is half of the perturbation size (ε/2 = 4/255),
so that it will support the way we’ve drawn the intuition in 1,
where examples "switch" places after the attack. In the fol-
lowing experiment, we used SVHN with a naturally trained
model using PreAct ResNet-18, and 1000 random examples
from SVHN’s test set. To calculate the distance, we followed
the distance estimation suggested in [34]. We estimate the
distance to a decision boundary in a sample of random direc-
tions in the model’s input space, starting from a given input
point. In each direction, we estimate the distance to a decision
boundary by computing the model’s prediction on perturbed
inputs at points along the direction and increase the random
directions by a magnitude factor (0.002) if the prediction does
not change in any of the directions. We perform this search
over a set of 1,000 random orthogonal directions. Results are
present in Figure 10.

Figure 10: Histogram of the estimated distance from the deci-
sion boundary
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