The Impact of Exposed Passwords on Honeyword Efficacy


Zonghao Huang, Duke University; Lujo Bauer, Carnegie Mellon University; Michael K. Reiter, Duke University


Honeywords are decoy passwords that can be added to a credential database; if a login attempt uses a honeyword, this indicates that the site's credential database has been leaked. In this paper we explore the basic requirements for honeywords to be effective, in a threat model where the attacker knows passwords for the same users at other sites. First, we show that for user-chosen (vs. algorithmically generated, i.e., by a password manager) passwords, existing honeyword-generation algorithms do not simultaneously achieve false-positive and false-negative rates near their ideals of ≈0 and ≈ 1/1+n, respectively, in this threat model, where n is the number of honeywords per account. Second, we show that for users leveraging algorithmically generated passwords, state-of-the-art methods for honeyword generation will produce honeywords that are not sufficiently deceptive, yielding many false negatives. Instead, we find that only a honeyword-generation algorithm that uses the same password generator as the user can provide deceptive honeywords in this case. However, when the defender's ability to infer the generator from the (one) account password is less accurate than the attacker's ability to infer the generator from potentially many, this deception can again wane. Taken together, our results provide a cautionary note for the state of honeyword research and pose new challenges to the field.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.