K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures


Daniel Collins, Loïs Huguenin-Dumittan, and Ngoc Khanh Nguyen, EPFL; Nicolas Rolin, Spuerkeess; Serge Vaudenay, EPFL


The Signal protocol and its X3DH key exchange core are regularly used by billions of people in applications like WhatsApp but are unfortunately not quantum-secure. Thus, designing an efficient and post-quantum secure X3DH alternative is paramount. Notably, X3DH supports asynchronicity, as parties can immediately derive keys after uploading them to a central server, and deniability, allowing parties to plausibly deny having completed key exchange. To satisfy these constraints, existing post-quantum X3DH proposals use ring signatures (or equivalently a form of designated-verifier signatures) to provide authentication without compromising deniability as regular signatures would. Existing ring signature schemes, however, have some drawbacks. Notably, they are not generally proven secure in the quantum random oracle model (QROM) and so the quantum security of parameters that are proposed is unclear and likely weaker than claimed. In addition, they are generally slower than standard primitives like KEMs.

In this work, we propose an efficient, deniable and post-quantum X3DH-like protocol that we call K-Waay, that does not rely on ring signatures. At its core, K-Waay uses a split-KEM, a primitive introduced by Brendel et al. [SAC 2020], to provide Diffie-Hellman-like implicit authentication and secrecy guarantees. Along the way, we revisit the formalism of Brendel et al. and identify that additional security properties are required to prove a split-KEM-based protocol secure. We instantiate split-KEM by building a protocol based on the Frodo key exchange protocol relying on the plain LWE assumption: our proofs might be of independent interest as we show it satisfies our novel unforgeability and deniability security notions. Finally, we complement our theoretical results by thoroughly benchmarking both K-Waay and existing X3DH protocols. Our results show even when using plain LWE and a conservative choice of parameters that K-Waay is significantly faster than previous work.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.