HYPERPILL: Fuzzing for Hypervisor-bugs by leveraging the Hardware Virtualization Interface


Alexander Bulekov, EPFL, Boston University, and Amazon; Qiang Liu, EPFL and Zhejiang University; Manuel Egele, Boston University; Mathias Payer, EPFL


The security guarantees of cloud computing depend on the isolation guarantees of the underlying hypervisors. Prior works have presented effective methods for automatically identifying vulnerabilities in hypervisors. However, these approaches are limited in scope. For instance, their implementation is typically hypervisor-specific and limited by requirements for detailed grammars, access to source-code, and assumptions about hypervisor behaviors. In practice, complex closed-source and recent open-source hypervisors are often not suitable for off-the-shelf fuzzing techniques.

HYPERPILL introduces a generic approach for fuzzing arbitrary hypervisors. HYPERPILL leverages the insight that although hypervisor implementations are diverse, all hypervisors rely on the identical underlying hardware-virtualization interface to manage virtual-machines. To take advantage of the hardware-virtualization interface, HYPERPILL makes a snapshot of the hypervisor, inspects the snapshotted hardware state to enumerate the hypervisor's input-spaces, and leverages feedback-guided snapshot-fuzzing within an emulated environment to identify vulnerabilities in arbitrary hypervisors. In our evaluation, we found that beyond being the first hypervisor-fuzzer capable of identifying vulnerabilities in arbitrary hypervisors across all major attack-surfaces (i.e., PIO/MMIO/Hypercalls/DMA), HYPERPILL also outperforms state-of-the-art approaches that rely on access to source-code, due to the granularity of feedback provided by HYPERPILL's emulation-based approach. In terms of coverage, HYPERPILL outperformed past fuzzers for 10/12 QEMU devices, without the API hooking or source-code instrumentation techniques required by prior works. HYPERPILL identified 26 new bugs in recent versions of QEMU, Hyper-V, and macOS Virtualization Framework across four device-categories

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.