XCheck: Verifying Integrity of 3D Printed Patient-Specific Devices via Computing Tomography


Zhiyuan Yu, Yuanhaur Chang, Shixuan Zhai, Nicholas Deily, and Tao Ju, Washington University in St. Louis; XiaoFeng Wang, Indiana University Bloomington; Uday Jammalamadaka, Rice University; Ning Zhang, Washington University in St. Louis


3D printing is bringing revolutionary changes to the field of medicine, with applications ranging from hearing aids to regrowing organs. As our society increasingly relies on this technology to save lives, the security of these systems is a growing concern. However, existing defense approaches that leverage side channels may require domain knowledge from computer security to fully understand the impact of the attack.

To bridge the gap, we propose XCheck, which leverages medical imaging to verify the integrity of the printed patient-specific device (PSD). XCheck follows a defense-in-depth approach and directly compares the computed tomography (CT) scan of the printed device to its original design. XCheck utilizes a voxel-based approach to build multiple layers of defense involving both 3D geometric verification and multivariate material analysis. To further enhance usability, XCheck also provides an adjustable visualization scheme that allows practitioners' inspection of the printed object with varying tolerance thresholds to meet the needs of different applications. We evaluated the system with 47 PSDs representing different medical applications to validate the efficacy.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {287344,
author = {Zhiyuan Yu and Yuanhaur Chang and Shixuan Zhai and Nicholas Deily and Tao Ju and XiaoFeng Wang and Uday Jammalamadaka and Ning Zhang},
title = {{XCheck}: Verifying Integrity of 3D Printed {Patient-Specific} Devices via Computing Tomography},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {2815--2832},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/yu-zhiyuan-xcheck},
publisher = {USENIX Association},
month = aug

Presentation Video