Hidden Reality: Caution, Your Hand Gesture Inputs in the Immersive Virtual World are Visible to All!

Authors: 

Sindhu Reddy Kalathur Gopal and Diksha Shukla, University of Wyoming; James David Wheelock, University of Colorado Boulder; Nitesh Saxena, Texas A&M University, College Station

Abstract: 

Text entry is an inevitable task while using Virtual Reality (VR) devices in a wide range of applications such as remote learning, gaming, and virtual meeting. VR users enter passwords/pins to log in to their user accounts in various applications and type regular text to compose emails or browse the internet. The typing activity on VR devices is believed to be resistant to direct observation attacks as the virtual screen in an immersive environment is not directly visible to others present in physical proximity. This paper presents a video-based side-channel attack, Hidden Reality (HR), that shows – although the virtual screen in VR devices is not in direct sight of adversaries, the indirect observations might get exploited to steal the user’s private information.

The Hidden Reality (HR) attack utilizes video clips of the user’s hand gestures while they type on the virtual screen to decipher the typed text in various key entry scenarios on VR devices including typed pins and passwords. Experimental analysis performed on a large corpus of 368 video clips show that the Hidden Reality model can successfully decipher an average of over 75% of the text inputs. The high success rate of our attack model led us to conduct a user study to understand the user’s behavior and perception of security in virtual reality. The analysis showed that over 95% of users were not aware of any security threats on VR devices and believed the immersive environments to be secure from digital attacks. Our attack model challenges users’ false sense of security in immersive environments and emphasizes the need for more stringent security solutions in VR space.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {287340,
author = {Sindhu Reddy Kalathur Gopal and Diksha Shukla and James David Wheelock and Nitesh Saxena},
title = {Hidden Reality: Caution, Your Hand Gesture Inputs in the Immersive Virtual World are Visible to All!},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {859--876},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/gopal},
publisher = {USENIX Association},
month = aug
}

Presentation Video