Understand Users' Privacy Perception and Decision of V2X Communication in Connected Autonomous Vehicles


Zekun Cai and Aiping Xiong, The Pennsylvania State University


Connected autonomous vehicles (CAVs) offer opportunities to improve road safety and enhance traffic efficiency. Vehicle-to-everything (V2X) communication allows CAVs to communicate with any entity that may affect, or may be affected by, the vehicles. The implementation of V2X in CAVs is inseparable from sharing and receiving a wide variety of data. Nevertheless, the public is not necessarily aware of such ubiquitous data exchange or does not understand their implications. We conducted an online study (N = 595) examining drivers’ privacy perceptions and decisions of four V2X application scenarios. Participants perceived more benefits but fewer risks of data sharing in the V2X scenarios where data collection is critical for driving than otherwise. They also showed more willingness to share data in those scenarios. In addition, we found that participants’ awareness of privacy risks (priming) and their experience on driving assistance and connectivity functions impacted their data-sharing decisions. Qualitative data confirmed that benefits, especially safety, come first, indicating a privacy-safety tradeoff. Moreover, factors such as misconceptions and novel expectations about CAV data collection and use moderated participants’ privacy decisions. We discuss implications of the obtained results to inform CAV privacy design and development.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {287158,
author = {Zekun Cai and Aiping Xiong},
title = {Understand Users{\textquoteright} Privacy Perception and Decision of {V2X} Communication in Connected Autonomous Vehicles},
booktitle = {32nd USENIX Security Symposium (USENIX Security 23)},
year = {2023},
isbn = {978-1-939133-37-3},
address = {Anaheim, CA},
pages = {2975--2992},
url = {https://www.usenix.org/conference/usenixsecurity23/presentation/cai-zekun},
publisher = {USENIX Association},
month = aug

Presentation Video