Hyperproofs: Aggregating and Maintaining Proofs in Vector Commitments


Shravan Srinivasan, University of Maryland; Alexander Chepurnoy, Ergo Platform; Charalampos Papamanthou, Yale University; Alin Tomescu, VMware Research; Yupeng Zhang, Texas A&M University


We present Hyperproofs, the first vector commitment (VC) scheme that is efficiently maintainable and aggregatable. Similar to Merkle proofs, our proofs form a tree that can be efficiently maintained: updating all n proofs in the tree after a single leaf change only requires O(logn) time. Importantly, unlike Merkle proofs, Hyperproofs are efficiently aggregatable, anywhere from 10× to 41× faster than SNARK-based aggregation of Merkle proofs. At the same time, an individual Hyperproof consists of only logn algebraic hashes (e.g., 32-byte elliptic curve points) and an aggregation of b such proofs is only O(log(blogn))-sized. Hyperproofs are also reasonably fast to update when compared to Merkle trees with SNARK-friendly hash functions.

As another benefit over Merkle trees, Hyperproofs are homomorphic: digests (and proofs) for two vectors can be homomorphically combined into a digest (and proofs) for their sum. Homomorphism is very useful in emerging applications such as stateless cryptocurrencies. First, it enables unstealability, a novel property that incentivizes proof computation. Second, it makes digests and proofs much more convenient to update.

Finally, Hyperproofs have certain limitations: they are not transparent, have linear-sized public parameters, are slower to verify, and have larger aggregated proofs and slower verification than SNARK-based approaches. Nonetheless, end-to-end, aggregation and verification in Hyperproofs is 10× to 41× faster than in SNARK-based Merkle trees.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {279974,
author = {Shravan Srinivasan and Alexander Chepurnoy and Charalampos Papamanthou and Alin Tomescu and Yupeng Zhang},
title = {Hyperproofs: Aggregating and Maintaining Proofs in Vector Commitments},
booktitle = {31st USENIX Security Symposium (USENIX Security 22)},
year = {2022},
isbn = {978-1-939133-31-1},
address = {Boston, MA},
pages = {3001--3018},
url = {https://www.usenix.org/conference/usenixsecurity22/presentation/srinivasan},
publisher = {USENIX Association},
month = aug,