MIRAGE: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs


Ahmed Kosba, Alexandria University; Dimitrios Papadopoulos, Hong Kong University of Science and Technology; Charalampos Papamanthou, University of Maryland; Dawn Song, UC Berkeley


The last few years have witnessed increasing interest in the deployment of zero-knowledge proof systems, in particular ones with succinct proofs and efficient verification (zk-SNARKs). One of the main challenges facing the wide deployment of zk-SNARKs is the requirement of a trusted key generation phase per different computation to achieve practical proving performance. Existing zero-knowledge proof systems that do not require trusted setup or have a single trusted preprocessing phase suffer from increased proof size and/or additional verification overhead. On the other other hand, although universal circuit generators for zk-SNARKs (that can eliminate the need for per-computation preprocessing) have been introduced in the literature, the performance of the prover remains far from practical for real-world applications.

In this paper, we first present a new zk-SNARK system that is well-suited for randomized algorithms—in particular it does not encode randomness generation within the arithmetic circuit allowing for more practical prover times. Then, we design a universal circuit that takes as input any arithmetic circuit of a bounded number of operations as well as a possible value assignment, and performs randomized checks to verify consistency. Our universal circuit is linear in the number of operations instead of quasi-linear like other universal circuits. By applying our new zk-SNARK system to our universal circuit, we build MIRAGE, a universal zk-SNARK with very succinct proofs—the proof contains just one additional element compared to the per-circuit preprocessing state-of-the-art zk-SNARK by Groth (Eurocrypt 2016). Finally, we implement MIRAGE and experimentally evaluate its performance for different circuits and in the context of privacy-preserving smart contracts.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {251580,
author = {Ahmed Kosba and Dimitrios Papadopoulos and Charalampos Papamanthou and Dawn Song},
title = {{MIRAGE}: Succinct Arguments for Randomized Algorithms with Applications to Universal zk-SNARKs},
booktitle = {29th {USENIX} Security Symposium ({USENIX} Security 20)},
year = {2020},
isbn = {978-1-939133-17-5},
pages = {2129--2146},
url = {https://www.usenix.org/conference/usenixsecurity20/presentation/kosba},
publisher = {{USENIX} Association},
month = aug,

Presentation Video