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Zero-Knowledge Proofs [GMR85]
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* The zero knowledge proof m should be convincing without leaking any information
about w.



zk-SNARKSs

» Zero knowledge succinct non-interactive arguments of knowledge
* Main advantage: Very short proofs and fast verification

* |In this talk, we consider QAP-based zk-SNARKs [GGPR13, PGHR13,
Groth16], which provide succinct constant-size proofs.

* This was attractive for many applications.
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Challenges of zk-SNARKs in Practice

* Challenge 1: High proof computation cost

* This led to several works on efficient circuit representations, SNARK-friendly
cryptography, back end optimizations, distributed zk-SNARK proof
computation, etc.

* Examples include:

Pantry [BFR+13], libsnark [BCTV14a], Scalable SNARKs [BCTV14b], TrueSet [KPP+14], Buffet[WSH+15],
Ad-SNARK [BBFR15], Geppetto [CFH+15], COCO [KZM+16], [FFG+16], xJsnark [KPS18], DIZK [WZC+18]

* Challenge 2: Trusted setup per computation

* The prover and verifier need access to a common reference string that is
generated in a trusted manner.

 |f done insecurely, the prover can cheat.



ZK Proof Systems

Trusted setup per
computation

[GGPR13], Pinocchio [PGHR13], [Groth16]

Succinct proofs (128 to 288 bytes)
Efficient verification

No trusted setup

Ligero [AHIV17], zk-STARKs [BBHR18],
Bulletproofs [BBBPWM18],

Hyrax [WTSTW18], Aurora [BCRSVW18],
Virgo [ZXZS20], ..

The proof size and/or the verification
effort are increased.

A middle ground?

Universal trusted
Setup

Approach 1: Universal Circuits
vnTinyRAM [BCTV14]

Maintains succinct proofs and efficient
verification

However, it has quasilinear circuits.
Very high proof computation cost.

Approach 2: Universal Updatable CRS
[GKMMM18], Sonic [MBKM19]
Concurrent: PLONK [GWC19],

MARLIN [CHMMVW19]

In Sonic (unhelped) mode, proofis 1.1 KB.
Concurrent work: 448 bytes — 1 KB.




Our Contributions

* We address the previous two challenges via
* Enabling randomized verification in zk-SNARK circuits.
* Making universal circuits more efficient.

* In comparison with other universal ZK proof systems,
* Universal circuit is linear instead of vnTinyRAM's quasilinear circuit.
 Succinct proofs and efficient verification (Proof size = 160 bytes)

* Proof size is 7x less than Sonic (unhelped), and 2.8x less than concurrent
work.
* Limitations:
* CRSis not updatable

* Proof computation overhead is high in comparison with per-circuit preprocessing zk-
SNARKSs



QAP-based zk-SNARK Circuits
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int compute(int[] input, int[] witness) {

return result;

Constraints

Cc = C3.C4

How to support randomized algorithms? Ce = Cs:(Cy + C)



Why Randomized Algorithms?

* Many problems can be solved more efficiently using randomized
algorithms. Examples include:
* Polynomial identity testing
* Primality testing

* In the case of universal zk-SNARK circuits, randomization can help
with verifying permutations efficiently.



Randomized Verification in the Circuit

Problem Solution Randomness
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Randomized Verification Circuit

!

Yes/No

If we allow the prover to choose the
randomness, or if the prover knows it
before computing the solution, the
prover can cheat.



Randomized Verification in the Circuit

* Naive solution:

Problem Solution
Modified circuit

______________________________________________________________

‘ Randomness
Random Oracle

(Hash function)

Randomized Verification Circuit

This solution will have a very high
cost, due to calling the hash
function in the circuit.

Question: Can we support
randomized verification without
having to pay this cost?
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Randomized Verification in the Circuit

* We modify the Groth16 zk-SNARK protocol to support randomization

* The prover adds one group element to the zk-SNARK proof. (Total proof size:
160 bytes)

* The verifier will do one extra pairing, and apply hash function calls on part of
the zk-SNARK proof.

* Intuition (simplified):
* In a zk-SNARK protocol, the prover computes group elements as functions of all wires in the
circuit.
* These group elements can act as commitments.
* We force the prover to do the computation of the proof over two stages.

* We utilize the first part of the zk-SNARK proof to produce the randomness needed for the
rest of the circuit.



How to make Universal Circuits more efficient?



Universal zk-SNARK Circuits

What is a universal circuit?

Program
Description

Assignment
(Values of
all variables)

»

Universal
Circuit

Example: A simple universal circuit that
supports two multiplication operations and two
addition operations.
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Universal zk-SNARK Circuits

The circuit must

vot (idy vy), (idy, v,), (idy vs)

1. Verify correctness : i
Example: assert (v,*v, = v,) MUL; idy Va), {ids, V), {ide, Ve

2. Verify consistency ADD|  (id;, v;), (idg, Vg), (idg, V) J

Example: ADD [ (id10, Vag), (idy, Viq), (idy,, VlZ)J

If (id, = idg), assert (v, = vg)

To implement (2) efficiently, this requires checking permutations
in the circuit. 14



Universal zk-SNARK Circuits

* To verify permutations, previous approaches, e.g., vnTinyRAM, use a
permutation network. This has an O(n log n) overhead, where n is the

number of operations.

e Using our modified zk-SNARK, we reduce this cost to O(n).

* We explore other issues related to universal circuit design in the
paper.



Evaluation

* Comparison with custom zk-SNARK circuits and vhTinyRAM
* We use vnTinyRAM results from [WSH+15]

 Scale of supported applications under nearly similar circuit costs:

Universal circuit? Supported Scale
Buffet, xJsnark X m = 188
Matrix multipli.cation vnTinyRAM J m=7
O(m?3) operations
MIRAGE v m=41
xJsnark X m = 600
Merge sort - vnTinyRAM V4 m =32
O(m log m) operations
MIRAGE v m = 200

We reduce the gap between the universal circuit approaches and the custom circuits.




Evaluation

* Privacy-preserving smart contracts.

* In HAWK [KMS+16], a trusted setup is needed per smart contract.
* Instead, MIRAGE's universal circuit can be used.

* Cryptographic keys will be generated once in a trusted manner.

* For any new computation, a publicly verifiable custom verification key (32 bytes) will be
pushed to the blockchain. (This does not require a trusted setup)

Needs a trusted setup

per app
Auction Universal | Universal | Universal | | Custom Custom Proof Proof | Verification
(6 parties) | Setup PK VK PK VK time size time
HAWK X N/A 57.8 MB 3.9 KB 10.3 sec 128 B 1.5 ms
This work | v 1.8 GB 473 KB N/A 322 sec 160 B 2.1 ms
A v 4
/

Succinct proof and
Cost of universality minimal verification overhead



Conclusions and Future Directions

* We presented MIRAGE, which enables

* Verification of randomized algorithms in zk-SNARK circuits
* Linear-sized universal circuits

* Future directions:
* More optimization for universal circuits
* Explore scalability options
* Integrate randomization in zk-SNARK compilers (for non-universal circuits)



Thank you!
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