
MIRAGE: Succinct Arguments for Randomized
Algorithms with Applications to Universal zk-SNARKs

Ahmed Kosba (Alexandria University)

Dimitrios Papadopoulos (Hong Kong University of Science and Technology)

Charalampos Papamanthou (University of Maryland)

Dawn Song (UC Berkeley)

USENIX Security 2020

Zero-Knowledge Proofs [GMR85]

• The zero knowledge proof 𝜋 should be convincing without leaking any information
about w.

Input x

Output y , ZK Proof 𝜋

Verifier

Prover

y = F(x, w)

F

w (known only to the prover)x

2

zk-SNARKs

• Zero knowledge succinct non-interactive arguments of knowledge
• Main advantage: Very short proofs and fast verification

• In this talk, we consider QAP-based zk-SNARKs [GGPR13, PGHR13,
Groth16], which provide succinct constant-size proofs.
• This was attractive for many applications.

2014 2015 20162013 2017

PinocchioCoin
[DFKP]

ZeroCash [BCGGMTV]

ALITHEIA [ZPK] VerDP [NFPH]

Mining Puzzles [MKKS] Cinderella [DFKP]

PhotoProof [NT]

Hawk [KMSWP]

Support for zk-SNARKs
added for Ethereum

3

Challenges of zk-SNARKs in Practice

• Challenge 1: High proof computation cost
• This led to several works on efficient circuit representations, SNARK-friendly

cryptography, back end optimizations, distributed zk-SNARK proof
computation, etc.

• Examples include:
Pantry [BFR+13], libsnark [BCTV14a], Scalable SNARKs [BCTV14b], TrueSet [KPP+14], Buffet[WSH+15],
Ad-SNARK [BBFR15], Geppetto [CFH+15], C0C0 [KZM+16], [FFG+16], xJsnark [KPS18], DIZK [WZC+18]

• Challenge 2: Trusted setup per computation
• The prover and verifier need access to a common reference string that is

generated in a trusted manner.

• If done insecurely, the prover can cheat.

4

ZK Proof Systems

Trusted setup per
computation

[GGPR13], Pinocchio [PGHR13], [Groth16]
• Succinct proofs (128 to 288 bytes)
• Efficient verification

No trusted setup

Ligero [AHIV17], zk-STARKs [BBHR18],
Bulletproofs [BBBPWM18],
Hyrax [WTSTW18], Aurora [BCRSVW18],
Virgo [ZXZS20], ..

• The proof size and/or the verification
effort are increased.

Universal trusted
Setup

Approach 1: Universal Circuits
vnTinyRAM [BCTV14]

• Maintains succinct proofs and efficient
verification

• However, it has quasilinear circuits.
• Very high proof computation cost.

Approach 2: Universal Updatable CRS
[GKMMM18], Sonic [MBKM19]
Concurrent: PLONK [GWC19],
MARLIN [CHMMVW19]

• In Sonic (unhelped) mode, proof is 1.1 KB.
• Concurrent work: 448 bytes – 1 KB.

A middle ground?

5

Our Contributions

• We address the previous two challenges via
• Enabling randomized verification in zk-SNARK circuits.

• Making universal circuits more efficient.

• In comparison with other universal ZK proof systems,
• Universal circuit is linear instead of vnTinyRAM's quasilinear circuit.

• Succinct proofs and efficient verification (Proof size = 160 bytes)

• Proof size is 7x less than Sonic (unhelped), and 2.8x less than concurrent
work.

• Limitations:
• CRS is not updatable

• Proof computation overhead is high in comparison with per-circuit preprocessing zk-
SNARKs

6

c5 = c3.c4

c6 = c5.(c1 + c2)
…
..

Constraints

..

int compute(int[] input, int[] witness){

.

.

return result;

}

How to support randomized algorithms?

QAP-based zk-SNARK Circuits

+ x

x

c1 c2 c3 c4

c5

c6

7

Why Randomized Algorithms?

• Many problems can be solved more efficiently using randomized
algorithms. Examples include:
• Polynomial identity testing

• Primality testing

• In the case of universal zk-SNARK circuits, randomization can help
with verifying permutations efficiently.

8

Randomized Verification in the Circuit

Randomized Verification Circuit

9

Yes/No

RandomnessProblem Solution

If we allow the prover to choose the
randomness, or if the prover knows it
before computing the solution, the
prover can cheat.

Randomized Verification in the Circuit

• Naïve solution:

Random Oracle
(Hash function)

10

Problem Solution

Randomized Verification Circuit

Yes/No

Modified circuit

Randomness

This solution will have a very high
cost, due to calling the hash
function in the circuit.

Question: Can we support
randomized verification without
having to pay this cost?

Randomized Verification in the Circuit

• We modify the Groth16 zk-SNARK protocol to support randomization
• The prover adds one group element to the zk-SNARK proof. (Total proof size:

160 bytes)

• The verifier will do one extra pairing, and apply hash function calls on part of
the zk-SNARK proof.

• Intuition (simplified):
• In a zk-SNARK protocol, the prover computes group elements as functions of all wires in the

circuit.

• These group elements can act as commitments.

• We force the prover to do the computation of the proof over two stages.

• We utilize the first part of the zk-SNARK proof to produce the randomness needed for the
rest of the circuit.

11

How to make Universal Circuits more efficient?

12

Universal zk-SNARK Circuits

13

Universal
Circuit

Program
Description

Assignment
(Values of
all variables)

Valid?

(id1, v1), (id2, v2), (id3, v3)

(id4, v4), (id5, v5), (id6, v6)

(id7, v7), (id8, v8), (id9, v9)

(id10, v10), (id11, v11), (id12, v12)

MUL

MUL

ADD

ADD

Example: A simple universal circuit that
supports two multiplication operations and two
addition operations.

What is a universal circuit?

Universal zk-SNARK Circuits

14

Example: assert (v1*v2 = v3)

1. Verify correctness

2. Verify consistency

The circuit must

Example:
If (id1 = id8), assert (v1 = v8)

To implement (2) efficiently, this requires checking permutations
in the circuit.

(id1, v1), (id2, v2), (id3, v3)

(id4, v4), (id5, v5), (id6, v6)

(id7, v7), (id8, v8), (id9, v9)

(id10, v10), (id11, v11), (id12, v12)

MUL

MUL

ADD

ADD

Universal zk-SNARK Circuits

• To verify permutations, previous approaches, e.g., vnTinyRAM, use a
permutation network. This has an O(n log n) overhead, where n is the
number of operations.

• Using our modified zk-SNARK, we reduce this cost to O(n).

• We explore other issues related to universal circuit design in the
paper.

15

Evaluation

16

• Comparison with custom zk-SNARK circuits and vnTinyRAM
• We use vnTinyRAM results from [WSH+15]

• Scale of supported applications under nearly similar circuit costs:

Universal circuit? Supported Scale

Matrix multiplication
O(m3) operations

Buffet, xJsnark ✗ m = 188

vnTinyRAM ✓ m = 7

MIRAGE ✓ m = 41

Merge sort
O(m log m) operations

xJsnark ✗ m = 600

vnTinyRAM ✓ m = 32

MIRAGE ✓ m = 200

We reduce the gap between the universal circuit approaches and the custom circuits.

Evaluation
• Privacy-preserving smart contracts.

• In HAWK [KMS+16], a trusted setup is needed per smart contract.

• Instead, MIRAGE's universal circuit can be used.
• Cryptographic keys will be generated once in a trusted manner.

• For any new computation, a publicly verifiable custom verification key (32 bytes) will be
pushed to the blockchain. (This does not require a trusted setup)

17

Auction
(6 parties)

Universal
Setup

Universal
PK

Universal
VK

Custom
PK

Custom
VK

Proof
time

Proof
size

Verification
time

HAWK ✗ N/A 57.8 MB 3.9 KB 10.3 sec 128 B 1.5 ms

This work ✓ 1.8 GB 473 KB N/A 322 sec 160 B 2.1 ms

Needs a trusted setup
per app

Cost of universality
Succinct proof and
minimal verification overhead

Conclusions and Future Directions

• We presented MIRAGE, which enables
• Verification of randomized algorithms in zk-SNARK circuits

• Linear-sized universal circuits

• Future directions:
• More optimization for universal circuits

• Explore scalability options

• Integrate randomization in zk-SNARK compilers (for non-universal circuits)

18

Thank you!

ahmed.kosba@alexu.edu.eg

