Rendered Private: Making GLSL Execution Uniform to Prevent WebGL-based Browser Fingerprinting


Shujiang Wu, Song Li, and Yinzhi Cao, Johns Hopkins University; Ningfei Wang, Lehigh University


Browser fingerprinting, a substitute of cookies-based tracking, extracts a list of client-side features and combines them as a unique identifier for the target browser. Among all these features, one that has the highest entropy and the ability for an even sneakier purpose, i.e., cross-browser fingerprinting, is the rendering of WebGL tasks, which produce different results across different installations of the same browser on different computers, thus being considered as fingerprintable.

Such WebGL-based fingerprinting is hard to defend against, because the client browser executes a program written in OpenGL Shading Language (GLSL). To date, it remains unclear, in either the industry or the research community, about how and why the rendering of GLSL programs could lead to result discrepancies. Therefore, all the existing defenses, such as these adopted by Tor Browser, can only disable WebGL, i.e., a sacrifice of functionality over privacy, to prevent WebGL-based fingerprinting.

In this paper, we propose a novel system, called UNIGL, to rewrite GLSL programs and make uniform WebGL rendering procedure with the support of existing WebGL functionalities. Particularly, we, being the first in the community, point out that such rendering discrepancies in state-of-the-art WebGL-based fingerprinting are caused by floating-point operations. After realizing the cause, we design UNIGL so that it redefines all the floating-point operations, either explicitly written in GLSL programs or implicitly invoked by WebGL, to mitigate the fingerprinting factors.

We implemented a prototype of UNIGL as an open-source browser add-on ( We also created a demo website (, i.e., a modified version of an existing fingerprinting website, which directly integrates our add-on at the server-side to demonstrate the effectiveness of UNIGL. Our evaluation using crowdsourcing workers shows that UNIGL can prevent state-of-the-art WebGL-based fingerprinting with reasonable FPSes.

USENIX Security '19 Open Access Videos Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {235463,
author = {Shujiang Wu and Song Li and Yinzhi Cao and Ningfei Wang},
title = {Rendered Private: Making {GLSL} Execution Uniform to Prevent {WebGL-based} Browser Fingerprinting},
booktitle = {28th USENIX Security Symposium (USENIX Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1645--1660},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video