UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband

Authors: 

Mridula Singh, Patrick Leu, AbdelRahman Abdou, and Srdjan Capkun, ETH Zurich

Abstract: 

Mobile autonomous systems, robots, and cyber-physical systems rely on accurate positioning information. To conduct distance-measurement, two devices exchange signals and, knowing these signals propagate at the speed of light, the time of arrival is used for distance estimations. Existing distance-measurement techniques are incapable of protecting against adversarial distance enlargement---a highly devastating tactic in which the adversary reissues a delayed version of the signals transmitted between devices, after distorting the authentic signal to prevent the receiver from identifying it. The adversary need not break crypto, nor compromise any upper-layer security protocols for mounting this attack. No known solution currently exists to protect against distance enlargement. We present \textit{Ultra-Wideband Enlargement Detection} (UWB-ED), a new modulation technique to detect distance enlargement attacks, and securely verify distances between two mutually trusted devices. We analyze UWB-ED under an adversary that injects signals to block/modify authentic signals. We show how UWB-ED is a good candidate for 802.15.4z Low Rate Pulse and the 5G standard.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {235453,
title = {UWB-ED: Distance Enlargement Attack Detection in Ultra-Wideband},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
address = {Santa Clara, CA},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/singh},
publisher = {{USENIX} Association},
}