Secure Multi-User Content Sharing for Augmented Reality Applications

Authors: 

Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner, University of Washington

Abstract: 

Augmented reality (AR), which overlays virtual content on top of the user's perception of the real world, has now begun to enter the consumer market. Besides smartphone platforms, early-stage head-mounted displays such as the Microsoft HoloLens are under active development. Many compelling uses of these technologies are multi-user: e.g., in-person collaborative tools, multiplayer gaming, and telepresence. While prior work on AR security and privacy has studied potential risks from AR applications, new risks will also arise among multiple human users. In this work, we explore the challenges that arise in designing secure and private content sharing for multi-user AR. We analyze representative application case studies and systematize design goals for security and functionality that a multi-user AR platform should support. We design an AR content sharing control module that achieves these goals and build a prototype implementation (ShareAR) for the HoloLens. This work builds foundations for secure and private multi-user AR interactions.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {236306,
author = {Kimberly Ruth and Tadayoshi Kohno and Franziska Roesner},
title = {Secure Multi-User Content Sharing for Augmented Reality Applications},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {141--158},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/ruth},
publisher = {{USENIX} Association},
month = aug,
}