Not Everything is Dark and Gloomy: Power Grid Protections Against IoT Demand Attacks


Bing Huang, The University of Texas at Austin; Alvaro A. Cardenas, University of California, Santa Cruz; Ross Baldick, The University of Texas at Austin


This paper discusses and characterizes the impacts of Internet of Things (IoT) demand attacks on the secure operation of power transmission grids. Increasingly, Internet connections are available to devices with high energy consumption such as air conditioners and water heaters. However, these new connections expose the control of new electric loads to potential manipulation by attackers. In this paper we investigate the impacts of this potential IoT demand manipulation attack on power transmission grids. Our work has focused on developing a cascading outage analysis (COA) tool to model in detail conditions that can lead to cascading outages in large power grids. In this paper, we apply our tool to a large North American regional transmission interconnection system consisting of more than 5,000 buses, and study how IoT demand attacks can affect the power system assuming that attackers gained full control of a portion of the system demand. To help assess the effects of such cyber attacks, we develop numerical experiments and define different types of IoT demand attacks to study the cascading failures on transmission lines and the interruptions to the system frequency.

USENIX Security '19 Open Access Videos Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {236250,
author = {Bing Huang and Alvaro A. Cardenas and Ross Baldick},
title = {Not Everything is Dark and Gloomy: Power Grid Protections Against {IoT} Demand Attacks},
booktitle = {28th USENIX Security Symposium (USENIX Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1115--1132},
url = {},
publisher = {USENIX Association},
month = aug

Presentation Video