EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers


Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, and Chijin Zhou, Tsinghua University; Xun Jiao, Villanova University; Zhuo Su, Tsinghua University


Fuzzing is widely used for vulnerability detection. There are various kinds of fuzzers with different fuzzing strategies, and most of them perform well on their targets. However, in industrial practice, it is found that the performance of those well-designed fuzzing strategies is challenged by the complexity and diversity of real-world applications. In this paper, we systematically study an ensemble fuzzing approach. First, we define the diversity of base fuzzers in three heuristics: diversity of coverage information granularity, diversity of input generation strategy and diversity of seed selection and mutation strategy. Based on those heuristics, we choose several of the most recent base fuzzers that are as diverse as possible, and propose a globally asynchronous and locally synchronous (GALS) based seed synchronization mechanism to seamlessly ensemble those base fuzzers and obtain better performance. For evaluation, we implement EnFuzz based on several widely used fuzzers such as QSYM and FairFuzz, and then we test them on LAVA-M and Google’s fuzzing-test-suite, which consists of 24 widely used real-world applications. This experiment indicates that, under the same constraints for resources, these base fuzzers perform differently on different applications, while EnFuzz always outperforms other fuzzers in terms of path coverage, branch coverage and bug discovery. Furthermore, EnFuzz found 60 new vulnerabilities in several well-fuzzed projects such as libpng and libjpeg, and 44 new CVEs were assigned.

@inproceedings {236220,
title = {EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzers},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
address = {Santa Clara, CA},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang},
publisher = {{USENIX} Association},