Siyuan Zhuang, UC Berkeley; Stephanie Wang, UC Berkeley and Anyscale; Eric Liang and Yi Cheng, Anyscale; Ion Stoica, UC Berkeley
Given the fundamental tradeoff between run-time and recovery performance, current distributed systems often build application-specific recovery strategies to minimize overheads. However, it is increasingly common for different applications to be composed into heterogeneous pipelines. Implementing multiple interoperable recovery techniques in the same system is rare and difficult. Thus, today's users must choose between: (1) building on a single system, and face a fixed choice of performance vs. recovery overheads, or (2) the challenging task of stitching together multiple systems that can offer application-specific tradeoffs.
We present ExoFlow, a universal workflow system that enables a flexible choice of recovery vs. performance tradeoffs, even within the same application. The key insight behind our solution is to decouple execution from recovery and provide exactly-once semantics as a separate layer from execution. For generality, workflow tasks can return references that capture arbitrary inter-task communication. To enable the workflow system and therefore the end user to take control of recovery, we design task annotations that specify execution semantics such as nondeterminism. ExoFlow generalizes recovery for existing workflow applications ranging from ETL pipelines to stateful serverless workflows, while enabling further optimizations in task communication and recovery.
OSDI '23 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Siyuan Zhuang and Stephanie Wang and Eric Liang and Yi Cheng and Ion Stoica},
title = {{ExoFlow}: A Universal Workflow System for {Exactly-Once} {DAGs}},
booktitle = {17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23)},
year = {2023},
isbn = {978-1-939133-34-2},
address = {Boston, MA},
pages = {269--286},
url = {https://www.usenix.org/conference/osdi23/presentation/zhuang},
publisher = {USENIX Association},
month = jul
}