Marius: Learning Massive Graph Embeddings on a Single Machine

Website Maintenance Alert

Due to scheduled maintenance, the USENIX website may not be available on Monday, March 17, from 10:00 am–6:00 pm Pacific Daylight Time (UTC -7). We apologize for the inconvenience and thank you for your patience.

If you would like to register for NSDI '25, SREcon25 Americas, or PEPR '25, please complete your registration before or after this time period.

Authors: 

Jason Mohoney and Roger Waleffe, University of Wisconsin–Madison; Henry Xu, University of Maryland, College Park; Theodoros Rekatsinas and Shivaram Venkataraman, University of Wisconsin–Madison

Abstract: 

We propose a new framework for computing the embeddings of large-scale graphs on a single machine. A graph embedding is a fixed length vector representation for each node (and/or edge-type) in a graph and has emerged as the de-facto approach to apply modern machine learning on graphs. We identify that current systems for learning the embeddings of large-scale graphs are bottlenecked by data movement, which results in poor resource utilization and inefficient training. These limitations require state-of-the-art systems to distribute training across multiple machines. We propose Marius, a system for efficient training of graph embeddings that leverages partition caching and buffer-aware data orderings to minimize disk access and interleaves data movement with computation to maximize utilization. We compare Marius against two state-of-the-art industrial systems on a diverse array of benchmarks. We demonstrate that Marius achieves the same level of accuracy but is up to one order of magnitude faster. We also show that Marius can scale training to datasets an order of magnitude beyond a single machine's GPU and CPU memory capacity, enabling training of configurations with more than a billion edges and 550 GB of total parameters on a single machine with 16 GB of GPU memory and 64 GB of CPU memory. Marius is open-sourced at www.marius-project.org.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {273733,
author = {Jason Mohoney and Roger Waleffe and Henry Xu and Theodoros Rekatsinas and Shivaram Venkataraman},
title = {Marius: Learning Massive Graph Embeddings on a Single Machine},
booktitle = {15th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 21)},
year = {2021},
isbn = {978-1-939133-22-9},
pages = {533--549},
url = {https://www.usenix.org/conference/osdi21/presentation/mohoney},
publisher = {{USENIX} Association},
month = jul
}

Presentation Video