Jinhyung Koo, Junsu Im, Jooyoung Song, and Juhyung Park, DGIST; Eunji Lee, Soongsil University; Bryan S. Kim, Syracuse University; Sungjin Lee, DGIST
We argue that a key-value interface between a file system and an SSD is superior to the legacy block interface by presenting KEVIN. KEVIN combines a fast, lightweight, and POSIX compliant file system with a key-value storage device that performs in-storage indexing. We implement a variant of a log-structured merge tree in the storage device that not only indexes file objects, but also supports transactions and manages physical storage space. As a result, the design of a file system with respect to space management and crash consistency is simplified, requiring only 10.8K LOC for full functionality. We demonstrate that KEVIN reduces the amount of I/O traffic between the host and the device, and remains particularly robust as the system ages and the data become fragmented. Our approach outperforms existing file systems on a block SSD by a wide margin – 6.2× on average – for metadata-intensive benchmarks. For realistic workloads, KEVIN improves throughput by 68% on average.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Jinhyung Koo and Junsu Im and Jooyoung Song and Juhyung Park and Eunji Lee and Bryan S. Kim and Sungjin Lee},
title = {Modernizing File System through In-Storage Indexing},
booktitle = {15th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 21)},
year = {2021},
isbn = {978-1-939133-22-9},
pages = {75--92},
url = {https://www.usenix.org/conference/osdi21/presentation/koo},
publisher = {{USENIX} Association},
month = jul
}