Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '14 Home
  • Symposium Organizers
  • At a Glance
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • Technical Sessions
  • Co-Located Workshops
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Students and Grants
  • Co-located Workshops
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Scaling Distributed Machine Learning with the Parameter Server
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Scaling Distributed Machine Learning with the Parameter Server

Thursday, August 7, 2014 - 3:30pm
Authors: 

Mu Li, Carnegie Mellon University and Baidu; David G. Andersen and Jun Woo Park, Carnegie Mellon University; Alexander J. Smola, Carnegie Mellon University and Google, Inc.; Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su, Google, Inc.

Abstract: 

We propose a parameter server framework for distributed machine learning problems. Both data and workloads are distributed over worker nodes, while the server nodes maintain globally shared parameters, represented as dense or sparse vectors and matrices. The framework manages asynchronous data communication between nodes, and supports flexible consistency models, elastic scalability, and continuous fault tolerance.

To demonstrate the scalability of the proposed framework, we show experimental results on petabytes of real data with billions of examples and parameters on problems ranging from Sparse Logistic Regression to Latent Dirichlet Allocation and Distributed Sketching.

Mu Li, Carnegie Mellon University and Baidu

David G. Andersen, Carnegie Mellon University

Jun Woo Park, Carnegie Mellon University

Alexander J. Smola, Carnegie Mellon University and Google, Inc.

Amr Ahmed, Google, Inc.

Vanja Josifovski, Google, Inc.

James Long, Google, Inc.

Eugene J. Shekita, Google, Inc.

Bor-Yiing Su, Google, Inc.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Li PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us