Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • OSDI '12 Home
  • Organizers
  • Registration Information
  • Registration Discounts
  • At a Glance
  • Calendar
  • Technical Sessions
  • Workshops
  • Poster Sessions and Receptions
  • Birds-of-a-Feather Sessions
  • Sponsors
  • Activities
  • Hotel and Travel Information
  • Services
  • Students
  • Questions
  • Help Promote
  • For Participants
  • Call for Papers
  • Past Proceedings

sponsors

Diamond Sponsor
Diamond Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » All about Eve: Execute-Verify Replication for Multi-Core Servers
Tweet

connect with us

http://twitter.com/usenix
https://www.facebook.com/events/284007718333937/
http://www.linkedin.com/groups/USENIX-Association-49559/about
http://www.youtube.com/user/USENIXAssociation

All about Eve: Execute-Verify Replication for Multi-Core Servers

Authors: 

Manos Kapritsos and Yang Wang, University of Texas at Austin; Vivien Quema, Grenoble INP; Allen Clement, MPI-SWS; Lorenzo Alvisi and Mike Dahlin, University of Texas at Austin

Abstract: 

This paper presents Eve, a new Execute-Verify architecture that allows state machine replication to scale to multi-core servers. Eve departs from the traditional agree-execute architecture of state machine replication: replicas first execute groups of requests concurrently and then verify that they can reach agreement on a state and output produced by a correct replica; if they can not, they roll back and execute the requests sequentially. Eve minimizes divergence using application-specific criteria to organize requests into groups of requests that are unlikely to interfere. Our evaluation suggests that Eve’s unique ability to combine execution independence with nondetermistic interleaving of requests enables highperformance replication for multi-core servers while tolerating a wide range of faults, including elusive concurrency bugs.

Manos Kapritsos, University of Texas at Austin

Yang Wang, University of Texas at Austin

Vivien Quema, Grenoble INP

Allen Clement, MPI-SWS

Lorenzo Alvisi, University of Texas at Austin

Mike Dahlin, University of Texas at Austin

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

Kapritsos PDF
View the slides

Presentation Video

Presentation Audio

MP3 Download OGG Download

Download Audio

  • Log in or    Register to post comments

Diamond Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us