Doing More with Less: Orchestrating Serverless Applications without an Orchestrator

Authors: 

David H. Liu and Amit Levy, Princeton University; Shadi Noghabi and Sebastian Burckhardt, Microsoft Research

Abstract: 

Standalone orchestrators simplify the development of serverless applications by providing higher-level programming interfaces, coordinating function interactions and ensuring exactly-once execution. However, they limit application flexibility and are expensive to use. We show that these specialized orchestration services are unnecessary. Instead, application-level orchestration, deployed as a library, can support the same programming interfaces, complex interactions and execution guarantees, utilizing only basic serverless components that are already universally supported and billed at a fine-grained per-use basis. Furthermore, application-level orchestration affords applications more flexibility and reduces costs for both providers and users.

To demonstrate this, we present Unum, an application-level serverless orchestration system. Unum introduces an intermediate representation that partitions higher-level application definitions at compile-time and provides orchestration as a runtime library that executes in-situ with user-defined FaaS functions. On unmodified serverless infrastructures, Unum functions coordinate and ensure correctness in a decentralized manner by leveraging strongly consistent data stores.

Compared with AWS Step Functions, a state-of-the-art standalone orchestrator, our evaluation shows that Unum performs well, costs significantly less and grants applications greater flexibility to employ application-specific patterns and optimizations. For a representative set of applications, Unum runs as much as 2x faster and costs 9x cheaper.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

This content is available to:

Liu Paper (Prepublication) PDF