Giuseppe Siracusano, NEC Laboratories Europe; Salvator Galea, University of Cambridge; Davide Sanvito, NEC Laboratories Europe; Mohammad Malekzadeh, Imperial College London; Gianni Antichi, Queen Mary University of London; Paolo Costa, Microsoft Research; Hamed Haddadi, Imperial College London; Roberto Bifulco, NEC Laboratories Europe
We present an approach to improve the scalability of online machine learning-based network traffic analysis. We first make the case to replace widely-used supervised machine learning models for network traffic analysis with binary neural networks. We then introduce Neural Networks on the NIC (N3IC), a system that compiles binary neural network models into implementations that can be directly integrated in the data plane of SmartNICs. N3IC supports different hardware targets, and it generates data plane descriptions using both micro-C and P4 languages.
We implement and evaluate our solution using two use cases related to traffic identification and to anomaly detection. In both cases, N3IC provides up to a 100x lower classification latency, and 1.5–7x higher throughput than state-of-the-art software-based machine learning classification systems. This is achieved by running the entire traffic analysis pipeline within the data plane of the SmartNIC, thereby completely freeing the system's CPU from any related tasks, while forwarding traffic at line rate (40Gbps) on the target NICs. Encouraged by these results we finally present the design and FPGA-based prototype of a hardware primitive that adds binary neural network support to a NIC data plane. Our new primitive requires less than 1–2% of the logic and memory resources of a VirteX7 FPGA. We show through experimental evaluation that extending the NIC data plane enables more challenging use cases that require online traffic analysis to be performed in a few microseconds.
NSDI '22 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Giuseppe Siracusano and Salvator Galea and Davide Sanvito and Mohammad Malekzadeh and Gianni Antichi and Paolo Costa and Hamed Haddadi and Roberto Bifulco},
title = {Re-architecting Traffic Analysis with Neural Network Interface Cards},
booktitle = {19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22)},
year = {2022},
isbn = {978-1-939133-27-4},
address = {Renton, WA},
pages = {513--533},
url = {https://www.usenix.org/conference/nsdi22/presentation/siracusano},
publisher = {USENIX Association},
month = apr
}