Graham: Synchronizing Clocks by Leveraging Local Clock Properties


Ali Najafi, Meta; Michael Wei, VMware Research

Awarded Best Paper!


High performance, strongly consistent applications are beginning to require scalable sub-microsecond clock synchronization. State-of-the-art clock synchronization focuses on improving accuracy or frequency of synchronization, ignoring the properties of the local clock: lost of connectivity to the remote clock means synchronization failure.

Our system, Graham, leverages the fact that the local clock still keeps time even when connectivity is lost and builds a failure model using the characteristics of the local clock and the desired synchronization accuracy. Graham characterizes the local clock using commodity sensors present in nearly every server and leverages this data to further improve clock accuracy, increasing the tolerance of Graham to failures. Graham reduces the clock drift of a commodity server by up to 2000×, reducing the maximum assumed drift in most situations from 200ppm to 100ppb.

NSDI '22 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {278378,
author = {Ali Najafi and Michael Wei},
title = {Graham: Synchronizing Clocks by Leveraging Local Clock Properties},
booktitle = {19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22)},
year = {2022},
isbn = {978-1-939133-27-4},
address = {Renton, WA},
pages = {453--466},
url = {},
publisher = {USENIX Association},
month = apr

Presentation Video