Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Technical Sessions
  • Activities
    • Posters and Demos
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
    • Grants for Women
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » High Throughput Data Center Topology Design
Tweet

connect with us

https://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

High Throughput Data Center Topology Design

Authors: 

Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla, University of Illinois at Urbana–Champaign

Abstract: 

With high throughput networks acquiring a crucial role in supporting data-intensive applications, a variety of data center network topologies have been proposed to achieve high capacity at low cost. While this work explores a large number of design points, even in the limited case of a network of identical switches, no proposal has been able to claim any notion of optimality. The case of heterogeneous networks, incorporating multiple line-speeds and port-counts as data centers grow over time, introduces even greater complexity.

In this paper, we present the first non-trivial upperbound on network throughput under uniform traffic patterns for any topology with identical switches. We then show that random graphs achieve throughput surprisingly close to this bound, within a few percent at the scale of a few thousand servers. Apart from demonstrating that homogeneous topology design may be reaching its limits, this result also motivates our use of random graphs as building blocks for design of heterogeneous networks. Given a heterogeneous pool of network switches, we explore through experiments and analysis, how the distribution of servers across switches and the interconnection of switches affect network throughput. We apply these insights to a real-world heterogeneous data center topology, VL2, demonstrating as much as 43% higher throughput with the same equipment.

Ankit Singla, University of Illinois at Urbana–Champaign

P. Brighten Godfrey, University of Illinois at Urbana–Champaign

Alexandra Kolla, University of Illinois at Urbana–Champaign

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179775,
author = {Ankit Singla and P. Brighten Godfrey and Alexandra Kolla},
title = {High Throughput Data Center Topology Design},
booktitle = {11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14)},
year = {2014},
isbn = {978-1-931971-09-6},
address = {Seattle, WA},
pages = {29--41},
url = {https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla},
publisher = {USENIX Association},
month = apr
}
Download
Singla PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us