Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Technical Sessions
  • Activities
    • Posters and Demos
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
    • Grants for Women
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Recursively Cautious Congestion Control
Tweet

connect with us

https://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Recursively Cautious Congestion Control

Authors: 

Radhika Mittal, Justine Sherry, and Sylvia Ratnasamy, University of California, Berkeley; Scott Shenker, University of California, Berkeley, and International Computer Science Institute

Abstract: 

TCP’s congestion control is deliberately cautious, avoiding network overloads by starting with a small initial window and then iteratively ramping up. As a result, it often takes flows several round-trip times to fully utilize the available bandwidth. In this paper we propose RC3, a technique to quickly take advantage of available capacity from the very first RTT. RC3 uses several levels of lower priority service and a modified TCP behavior to achieve near-optimal throughputs while preserving TCP-friendliness and fairness. We implement RC3 in the Linux kernel and in NS-3. In common wide-area scenarios, RC3 results in over 40% reduction in average flow completion times, with strongest improvements—more than 70% reduction in flow completion time—seen in medium to large sized (100KB-3MB) flows.

Radhika Mittal, University of California, Berkeley

Justine Sherry, University of California, Berkeley

Sylvia Ratnasamy, University of California, Berkeley

Scott Shenker, University of California, Berkeley and International Computer Science Institute

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179761,
author = {Radhika Mittal and Justine Sherry and Sylvia Ratnasamy and Scott Shenker},
title = {Recursively Cautious Congestion Control},
booktitle = {11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14)},
year = {2014},
isbn = {978-1-931971-09-6},
address = {Seattle, WA},
pages = {373--385},
url = {https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/mittal},
publisher = {USENIX Association},
month = apr,
}
Download
Mittal PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us