Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Technical Sessions
  • Activities
    • Posters and Demos
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
    • Grants for Women
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » FaRM: Fast Remote Memory
Tweet

connect with us

https://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

FaRM: Fast Remote Memory

Authors: 

Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro; Microsoft Research

Abstract: 

We describe the design and implementation of FaRM, a new main memory distributed computing platform that exploits RDMA to improve both latency and throughput by an order of magnitude relative to state of the art main memory systems that use TCP/IP. FaRM exposes the memory of machines in the cluster as a shared address space. Applications can use transactions to allocate, read, write, and free objects in the address space with location transparency. We expect this simple programming model to be sufficient for most application code. FaRM provides two mechanisms to improve performance where required: lock-free reads over RDMA, and support for collocating objects and function shipping to enable the use of efficient single machine transactions. FaRM uses RDMA both to directly access data in the shared address space and for fast messaging and is carefully tuned for the best RDMA performance. We used FaRM to build a key-value store and a graph store similar to Facebook’s. They both perform well, for example, a 20-machine cluster can perform 167 million key-value lookups per second with a latency of 31We describe the design and implementation of FaRM, a new main memory distributed computing platform that exploits RDMA to improve both latency and throughput by an order of magnitude relative to state of the art main memory systems that use TCP/IP. FaRM exposes the memory of machines in the cluster as a shared address space. Applications can use transactions to allocate, read, write, and free objects in the address space with location transparency. We expect this simple programming model to be sufficient for most application code. FaRM provides two mechanisms to improve performance where required: lock-free reads over RDMA, and support for collocating objects and function shipping to enable the use of efficient single machine transactions. FaRM uses RDMA both to directly access data in the shared address space and for fast messaging and is carefully tuned for the best RDMA performance. We used FaRM to build a key-value store and a graph store similar to Facebook’s. They both perform well, for example, a 20-machine cluster can perform 167 million key-value lookups per second with a latency of 31μs.

Aleksandar Dragojević, Microsoft Research

Dushyanth Narayanan, Microsoft Research

Miguel Castro, Microsoft Research

Orion Hodson, Microsoft Research

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179767,
author = {Aleksandar Dragojevi{\'c} and Dushyanth Narayanan and Miguel Castro and Orion Hodson},
title = {{FaRM}: Fast Remote Memory},
booktitle = {11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14)},
year = {2014},
isbn = {978-1-931971-09-6},
address = {Seattle, WA},
pages = {401--414},
url = {https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{\'c}},
publisher = {USENIX Association},
month = apr,
}
Download
Dragojević PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us