Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Overview
  • Symposium Organizers
  • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
  • At a Glance
  • Calendar
  • Technical Sessions
  • Activities
    • Posters and Demos
    • Birds-of-a-Feather Sessions
  • Sponsorship
  • Students and Grants
    • Grants for Women
  • Services
  • Questions?
  • Help Promote!
  • For Participants
  • Call for Papers
  • Past Symposia

sponsors

Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
General Sponsor
General Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home ยป Full Duplex MIMO Radios
Tweet

connect with us

https://twitter.com/usenix
https://www.facebook.com/usenixassociation
http://www.linkedin.com/groups/USENIX-Association-49559/about
https://plus.google.com/108588319090208187909/posts
http://www.youtube.com/user/USENIXAssociation

Full Duplex MIMO Radios

Authors: 

Dinesh Bharadia and Sachin Katti, Stanford University

Abstract: 

This paper presents the design and implementation of the first in-band full duplex WiFi-PHY based MIMO radios that practically achieve the theoretical doubling of throughput. Our design solves two fundamental challenges associated with MIMO full duplex: complexity and performance. Our design achieves full duplex with a cancellation design whose complexity scales almost linearly with the number of antennas, this complexity is close to the optimal possible. Further we also design novel digital estimation and cancellation algorithms that eliminate almost all interference and achieves the same performance as a single antenna full duplex SISO system, which is again the best possible performance. We prototype our design by building our own analog circuit boards and integrating them with a WiFi-PHY compatible standard WARP software radio implementation. We show experimentally that our design works robustly in noisy indoor environments, and provides close to the expected theoretical doubling of throughput in practice.

Dinesh Bharadia, Stanford University

Sachin Katti, Stanford University

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {179789,
author = {Dinesh Bharadia and Sachin Katti},
title = {Full Duplex {MIMO} Radios},
booktitle = {11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14)},
year = {2014},
isbn = {978-1-931971-09-6},
address = {Seattle, WA},
pages = {359--372},
url = {https://www.usenix.org/conference/nsdi14/technical-sessions/bharadia},
publisher = {USENIX Association},
month = apr
}
Download
Bharadia PDF
View the slides

Presentation Video 

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Gold Sponsors

Silver Sponsors

Bronze Sponsors

General Sponsors

Media Sponsors & Industry Partners

© USENIX

  • Privacy Policy
  • Contact Us