Learning Cache Replacement with CACHEUS


Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, and Jason Liu, Florida International University; Ming Zhao, Arizona State University; Giri Narasimhan, Florida International University


Recent advances in machine learning open up new and attractive approaches for solving classic problems in computing systems. For storage systems, cache replacement is one such problem because of its enormous impact on performance. We classify workloads as a composition of four workload primitive types—LFU-friendly, LRU-friendly, scan, and churn. We then design and evaluate CACHEUS, a new class of fully adaptive, machine-learned caching algorithms that utilize a combination of experts designed to address these workload primitive types. The experts used by CACHEUS include the state-of-the-art ARC, LIRS and LFU, and two new ones – SR-LRU, a scan-resistant version of LRU, and CR-LFU, a churn-resistant version of LFU. We evaluate CACHEUS using 17;766 simulation experiments on a collection of 329 workloads run against 6 different cache configurations. Paired t-test analysis demonstrates that CACHEUS using the newly proposed lightweight experts, SR-LRU and CR-LFU, is the most consistently performing caching algorithm across a range of workloads and cache sizes. Furthermore, CACHEUS enables augmenting state-of-the-art algorithms (e.g., LIRS, ARC) by combining it with a complementary cache replacement algorithm (e.g., LFU) to better handle a wider variety of workload primitive types.

FAST '21 Open Access Sponsored by NetApp

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

@inproceedings {264840,
author = {Liana V. Rodriguez and Farzana Yusuf and Steven Lyons and Eysler Paz and Raju Rangaswami and Jason Liu and Ming Zhao and Giri Narasimhan},
title = {Learning Cache Replacement with {CACHEUS}},
booktitle = {19th {USENIX} Conference on File and Storage Technologies ({FAST} 21)},
year = {2021},
isbn = {978-1-939133-20-5},
pages = {341--354},
url = {https://www.usenix.org/conference/fast21/presentation/rodriguez},
publisher = {{USENIX} Association},
month = feb,