Skip to main content
USENIX
  • Conferences
  • Students
Sign in
  • Home
  • Attend
    • Registration Information
    • Registration Discounts
    • Venue, Hotel, and Travel
    • Students and Grants
  • Program
    • At a Glance
    • Technical Sessions
    • Training Program
    • Poster Sessions
    • WiPs
  • Activities
    • Birds-of-a-Feather Sessions
    • Poster Sessions
  • Sponsorship
  • Participate
    • Call for Papers
    • Call for Posters and WiPs
    • Instructions for Participants
  • About
    • Conference Organizers
    • Questions
    • Services
    • Help Promote!
    • Past Conferences
  • Home
  • Attend
  • Program
  • Activities
  • Sponsorship
  • Participate
  • About

sponsors

Platinum Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Gold Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Silver Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Bronze Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Media Sponsor
Industry Partner
Industry Partner

help promote

FAST '17 CFP

Get
Help Promote graphics!

connect with us


  •  Twitter
  •  Facebook
  •  LinkedIn
  •  Google+
  •  YouTube

twitter

Tweets by @usenix

usenix conference policies

  • Event Code of Conduct
  • Conference Network Policy
  • Statement on Environmental Responsibility Policy

You are here

Home » Flash Reliability in Production: The Expected and the Unexpected
Tweet

connect with us

Flash Reliability in Production: The Expected and the Unexpected

Authors: 

Bianca Schroeder, University of Toronto; Raghav Lagisetty and Arif Merchant, Google, Inc.

Abstract: 

As solid state drives based on flash technology are becoming a staple for persistent data storage in data centers, it is important to understand their reliability characteristics. While there is a large body of work based on experiments with individual flash chips in a controlled lab environment under synthetic workloads, there is a dearth of information on their behavior in the field. This paper provides a large-scale field study covering many millions of drive days, ten different drive models, different flash technologies (MLC, eMLC, SLC) over 6 years of production use in Google’s data centers. We study a wide range of reliability characteristics and come to a number of unexpected conclusions. For example, raw bit error rates (RBER) grow at a much slower rate with wear-out than the exponential rate commonly assumed and, more importantly, they are not predictive of uncorrectable errors or other error modes. The widely used metric UBER (uncorrectable bit error rate) is not a meaningful metric, since we see no correlation between the number of reads and the number of uncorrectable errors. We see no evidence that higher-end SLC drives are more reliable than MLC drives within typical drive lifetimes. Comparing with traditional hard disk drives, flash drives have a significantly lower replacement rate in the field, however, they have a higher rate of uncorrectable errors.

Bianca Schroeder, University of Toronto

Raghav Lagisetty, Google, Inc.

Arif Merchant, Google, Inc.

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

BibTeX
@inproceedings {194414,
author = {Bianca Schroeder and Raghav Lagisetty and Arif Merchant},
title = {Flash Reliability in Production: The Expected and the Unexpected},
booktitle = {14th USENIX Conference on File and Storage Technologies (FAST 16)},
year = {2016},
isbn = {978-1-931971-28-7},
address = {Santa Clara, CA},
pages = {67--80},
url = {https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder},
publisher = {USENIX Association},
month = feb
}
Download
Schroeder PDF
View the slides

Presentation Audio

MP3 Download

Download Audio

  • Log in or    Register to post comments

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Media Sponsors & Industry Partners

Open Access Publishing Partner

© USENIX

  • Privacy Policy
  • Contact Us