P2CACHE: Exploring Tiered Memory for In-Kernel File Systems Caching


Zhen Lin, Binghamton University; Lingfeng Xiang and Jia Rao, The University of Texas at Arlington; Hui Lu, Binghamton University


Fast, byte-addressable persistent memory (PM) is becoming a reality in products. However, porting legacy kernel file systems to fully support PM requires substantial effort and encounters the challenge of bridging the gap between block-based access granularity and byte-addressability. Moreover, new PM-specific file systems remain far from production-ready, preventing them from being widely used. In this paper, we propose P2CACHE, a novel in-kernel caching mechanism to explore how legacy kernel file systems can effectively evolve in the face of fast, byte-addressable PM. P2CACHE exploits a read/write-distinguishable memory hierarchy upon a tiered memory system involving both PM and DRAM. P2CACHE leverages PM to serve all write requests for instant data durability and strong crash consistency while using DRAM to serve most read I/Os for high I/O performance. Further, P2CACHE employs a simple yet effective synchronization model between PM and DRAM by leveraging device-level parallelism. Our evaluation shows that P2CACHE can significantly increase the performance of legacy kernel file systems -- e.g., by 200x for RocksDB on Ext4 -- meanwhile equipping them with instant data durability and strong crash consistency, similar to PM-specialized file systems.

USENIX ATC '23 Open Access Sponsored by
King Abdullah University of Science and Technology (KAUST)

Open Access Media

USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.

This content is available to:

@inproceedings {288741,
author = {Zhen Lin and Lingfeng Xiang and Jia Rao and Hui Lu},
title = {{P2CACHE}: Exploring Tiered Memory for {In-Kernel} File Systems Caching},
booktitle = {2023 USENIX Annual Technical Conference (USENIX ATC 23)},
year = {2023},
isbn = {978-1-939133-35-9},
address = {Boston, MA},
pages = {801--815},
url = {https://www.usenix.org/conference/atc23/presentation/lin},
publisher = {USENIX Association},
month = jul

Presentation Video