
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

p2Cache: Exploring Tiered Memory for
In-Kernel File Systems Caching

Zhen Lin, Binghamton University; Lingfeng Xiang and Jia Rao,
The University of Texas at Arlington; Hui Lu, Binghamton University

https://www.usenix.org/conference/atc23/presentation/lin

P2CACHE: Exploring Tiered Memory for In-Kernel File Systems Caching

Zhen Lin∗, Lingfeng Xiang†, Jia Rao†, Hui Lu∗
∗Binghamton University, †The University of Texas at Arlington

Abstract
Fast, byte-addressable persistent memory (PM) is becom-
ing a reality in products. However, porting legacy kernel file
systems to fully support PM requires substantial effort and
encounters the challenge of bridging the gap between block-
based access granularity and byte-addressability. Moreover,
new PM-specific file systems remain far from production-
ready, preventing them from being widely used. In this pa-
per, we propose P2CACHE, a novel in-kernel caching mecha-
nism to explore how legacy kernel file systems can effectively
evolve in the face of fast, byte-addressable PM. P2CACHE
exploits a read/write-distinguishable memory hierarchy upon
a tiered memory system involving both PM and DRAM.
P2CACHE leverages PM to serve all write requests for in-
stant data durability and strong crash consistency while using
DRAM to serve most read I/Os for high I/O performance.
Further, P2CACHE employs a simple yet effective synchro-
nization model between PM and DRAM by leveraging device-
level parallelism. Our evaluation shows that P2CACHE can
significantly increase the performance of legacy kernel file
systems – e.g., by 200x for RocksDB on Ext4 – meanwhile
equipping them with instant data durability and strong crash
consistency, similar to PM-specialized file systems.

1 Introduction
Rapid changes in storage technologies, ranging from rotating
hard disk drives (HDD) to NAND-based solid-state drives
(SSD), Non-Volatile Memory Express (NVMe) [9], and Stor-
age Class Memory (SCM) [10], play an essential role in driv-
ing the evolution of kernel file systems, such as Ext4 [35],
Btrfs [37], and XFS [24]. Features have been continuously
added to accommodate new and unique characteristics of
storage devices. Examples include I/O schedulers designed
for different types of storage media [21, 31, 39], concurrency
and scalability support for high-speed storage on multi-core
systems [17, 20], and the introduction of direct access mode
(DAX) for byte-addressable SCM [5, 22].

However, the evolution of kernel file systems hits a plateau
in light of emerging fast, byte-addressable storage [9, 10].
Kernel file systems are inherently built with the assumption

of slow, block-addressable storage devices (e.g., HDD/SSD)
sitting below. The layered in-kernel storage stack transforms
I/O requests from applications to block operations for storage
devices. As storage devices become faster, the overhead of the
layered storage stack becomes more significant. For example,
software contributes 50% of the read latency on a low latency
(3 us) NVMe SSD [45]. The software overhead becomes even
more dominant as storage devices become faster and closer
to the CPU. Intel’s Optane Persistent Memory [10] sitting on
the memory bus incurs read latency as low as ∼170 ns [44].

To address this pressing challenge, some approaches tended
to discard traditional kernel file systems. Indeed, a batch of
new file systems [5, 18, 19, 23, 27, 28, 40, 42, 43] has been
proposed – i.e., tailored for persistent memory (PM) [10] –
and achieved high I/O bandwidth, low I/O latency, and strong
crash consistency. Other approaches bypassed the kernel stor-
age stack by exposing PM or low-latency SSDs directly to
applications with userspace libraries [2] or file systems [32].
However, such new file systems and storage mechanisms may
take a long time to mature and become production-ready –
e.g., before having sufficient features and bug fixings.

We, instead, seek to answer the question: Can existing well-
tested, production-ready kernel file systems effectively evolve
to harness performance benefits and new characteristics of
emerging storage technologies, achieving the same properties
as those device-specialized file systems while requiring no
application modifications and radical system redesign?

To answer this question, we gather the main insights from
PM/SSD-specialized approaches that focus on minimizing
system software overhead. First, maximizing the performance
advantages of fast storage devices involves avoiding as much
work as possible in the critical path. For example, approaches
like SplitFS [27] and Strata [28] use a userspace library to
handle data (and metadata) operations directly, which are
then asynchronously processed by the kernel file system. Sec-
ond, fast storage devices, along with a lightweight journal-
ing/logging mechanism, can enable strong consistency with
little overhead. For instance, NOVA [43] ensures that each file
system update is synchronously persisted in an atomic manner.

USENIX Association 2023 USENIX Annual Technical Conference 801

Third, PM or modern NVMe SSD, with the advent of the high-
speed CPU-to-device interconnect technology like Compute
Express Link [4], provide a memory-like, byte-addressable
interface [26], offering new design and optimization oppor-
tunities, including efficient handling of small writes for file
system updates without write amplification.

These insights lead us to reap fast, byte-addressable storage
for legacy kernel file systems with a novel in-kernel caching
mechanism, P2CACHE. P2CACHE exploits a new read/write-
distinguishable memory hierarchy within a tiered memory
system involving both PM and DRAM. P2CACHE leverages
fast PM to serve all write requests for instant data durability
and strong crash consistency while using DRAM to serve
most read I/Os for high I/O performance because DRAM’s
read performance remains significantly higher than PM.

P2CACHE first introduces a persistent cache located be-
low the VFS layer. The persistent cache uses PM to quickly
and synchronously persist/buffer file system metadata/data
updates, guaranteeing instant data durability and strong crash
consistency. The buffered operations are then asynchronously
applied to underlying kernel file systems via the existing I/O
interface, ensuring compatibility with kernel file systems. The
persistent cache is built upon a lightweight operation log that
captures minimal operations (i.e., file system updates from
the VFS) and records them in a write-ahead log. It leverages
PM’s byte-addressability to efficiently persist metadata/data
updates without costly, block-based Copy-on-Write (CoW)
(commonly used in PM-based approaches [19,23,43]) – by de-
coupling the copy operation from the write operation, where a
write operation (of any size) is synchronously recorded while
the data copy is performed asynchronously.

P2CACHE further advances the page cache to serve most
reads via faster but volatile DRAM. To allow the two caches –
namely, the persistent cache and page cache – to work collab-
oratively and efficiently, P2CACHE leverages “device-level”
parallelism. Specifically, we observe that the I/O latency of
writing data to both PM and DRAM (at the same time) is al-
most the same as that of writing data to PM only, because the
latency of the (extra) copy to DRAM is hidden (overlapped)
by the parallel-but-slower PM write. This leads us to adopt a
simple and effective inclusive cache model, where multiple
copies of the same data are stored across the tiered mem-
ory, and the topmost layer (i.e., DRAM) always contains the
latest version. The inclusive cache model simplifies the syn-
chronization between the two caches: For writes, P2CACHE
updates both caches; for reads, P2CACHE searches from the
page cache, persistent cache, and underlying file systems se-
quentially until it first finds the data.

The benefits of P2CACHE are manifold: (1) P2CACHE re-
quires no modifications to user applications, libraries, or ker-
nel file systems while leveraging fast storage technologies
to provide high I/O performance, high I/O concurrency, in-
stant data durability, and strong consistency for legacy kernel
file systems. Meanwhile, kernel file systems can still operate

with their own (slow) storage devices (e.g., HDD/SSD). (2)
P2CACHE does not provide complex file system functionali-
ties (e.g., maintaining in-memory/on-disk data structures or
disk block management). Instead, it focuses on efficiently
persisting and buffering file system updates using PM as
a persistent cache. It is extremely lightweight and enables
legacy kernel file systems to achieve higher performance than
PM-specialized file systems (e.g., NOVA [43]). (3) Unlike
existing PM-based approaches that fully bypass DRAM (or
page cache), P2CACHE leverages DRAM to maximize I/O
performance – i.e., although PM has similar write latency as
DRAM, there is a considerable latency gap for reads (e.g., 3x
slower [44]). (4) Persistently buffering file system operations
(i.e., metadata/data) enables new system optimizations. For
example, P2CACHE accelerates the performance of a cold-
start file system (e.g., after re-mounting or recovering from
a system crash) by quickly re-building its in-memory cache
(e.g., dentry cache) from the persistent cache.

We have implemented P2CACHE as a Linux kernel mod-
ule interfacing with the VFS layer. Our evaluation with mi-
crobenchmarks and applications shows that the read/write-
distinguishable memory hierarchy allows P2CACHE to signif-
icantly increase the performance of legacy file systems (e.g.,
Ext4) by up to 200x for RocksDB [1] while providing instant
data durability and strong crash consistency. P2CACHE also
achieves higher I/O performance than existing PM-specialized
file systems, e.g., by up to 70% for RocksDB to NOVA [43].

2 Motivation
2.1 Fast Storage and Interconnect
Enabled by new storage technologies, such as 3D XPoint [12],
NVMe SSDs over the PCIe bus achieve much higher band-
width (e.g., 8 GB/s under the 70/30 mixed read/write case)
and lower latency (e.g., as low as 3µs) [45] than before.

Further, byte-addressable persistent memory (PM) has been
commercially available in a DIMM package on the memory
bus, e.g., Intel Optane DC persistent memory [10]. PM al-
lows programs to directly access data in non-volatile memory
from the CPU using load and store instructions. PM offers
approximately an order of magnitude higher capacity than
DRAM (e.g., 8x capacity in Optane DIMMs) and within an
order of magnitude performance of DRAM [44] (e.g., as low
as 80 ns for write latency and 170 ns for read latency).

Despite Intel discontinuing its Optane product, the storage
community is actively embracing high-speed CPU-to-device
interconnect technologies [11], such as Compute Express Link
(CXL) [4]. CXL provides a more general, unified interface to
disaggregate various types of storage devices (e.g., DRAM,
PM, and PCIe devices) directly to the CPU. CXL has the
potential to offer a memory-like, byte-addressable alterna-
tive (i.e., via load and store instructions) to PCIe storage’s
block interface with minor modifications [26]. We envision
that this trend will continue – storage devices will be increas-
ingly faster with higher bandwidth and lower latency and offer
byte-addressability via a memory-like interface. Although our

802 2023 USENIX Annual Technical Conference USENIX Association

EXT4-NJ
SSD

EXT4-DO
SSD

EXT4-DJ
SSD

0.1

1

10

100

800

IO
PS

 (*
 1

00
0)

(a) EXT4 + SSD

EXT4-NJ
PM

EXT4-DO
PM

EXT4-DJ
PM

(b) EXT4 + PM

EXT4-DAX-NJ
PM

EXT4-DAX-DO
PM

(c) EXT4 + DAX + PM

EXT4-NJ
DRAM

EXT4-DO
DRAM

EXT4-DJ
DRAM

(d) EXT4 + DAX + DRAM

TMPFS
DRAM

(e) TMPFS

NOVA
PM

(f) NOVA

1K I/O SIZE 4K I/O SIZE 16K I/O SIZE 64K I/O SIZE 256K I/O SIZE

Figure 1: I/O performance comparisons for writes between cases with the combination of (1) distinct file systems: EXT4,
EXT4-DAX, tmpfs, and NOVA; (2) journaling mode: no journal (NJ), data order (DO), and data journal (DJ); (3) storage medium:
SSD, PM, and DRAM; and (4) various I/O sizes: 1 KB, 4 KB, 16 KB, 64 KB, and 256 KB.

work focuses on DIMM-based PM, it sheds light on bridging
the gap between (1) byte-addressability, (2) a user-friendly
and backward-compatible programming interface in PM and
future CXL memory, and (3) the inherent differences between
PM and traditional DRAM-based memory.

2.2 Kernel File Systems
Kernel file systems [7, 24, 29, 35, 37] have undergone continu-
ous development and evolution, with the addition of features,
bug fixes, and improvements in performance and reliability.
For example, Ext4, the default general-purpose file system in
most Linux distributions, was initially released in 2001.

The in-kernel storage stack converts I/O requests from ap-
plications into block operations that are persisted to storage
devices through multiple software layers – i.e., the virtual
file system (VFS), kernel file systems, generic block layers,
journaling, and device drivers. While the layered design of
the storage stack works well with slow underlying storage
devices, such as HDD/SSD, it introduces nontrivial software
overhead that becomes more pronounced as storage devices
become faster. For example, in the case of low latency (3 us)
NVMe SSD, software contributes 50% to read latency [45].
Our study on faster devices confirms this observation. Obser-
vation 1: The in-kernel storage stack becomes the dominant
storage bottleneck, rendering traditional kernel file systems
unable to fully explore the potential of fast storage devices.
As depicted in Figure 1 (a), (b), and (d), Ext4 demonstrates
only a marginal improvement in I/O performance (for writes)
with PM (or even DRAM 1) compared to SSD, despite the
considerably faster speeds of PM/DRAM over SSD.
Virtual file system: Not all in-kernel storage layers contribute
equally to the storage software overhead. The VFS, sitting
atop the storage stack, incurs less than 10% of the overall
software overhead [45]. Further, tmpfs, a lightweight ker-
nel file system that works atop DRAM, achieves the highest
performance (Figure 1(e)), indicating that a thin file system
beneath the VFS can still leverage the benefits of fast storage
media. On the other hand, the VFS implements key file system
abstractions (e.g., inodes to represent metadata of on-disk

1We used DRAM to emulate fast storage devices.

files/directories) and functionalities (e.g., pathname lookup
to locate a file/directory given a path name and dcache to
cache such mappings in DRAM for quick lookup), commonly
used by underlying file systems. Observation 2: A storage
layer (e.g., a persistent cache or page cache) – sitting below
the VFS – can reuse VFS’s rich functionality while being slim.
Page cache: Because traditional disk accesses (e.g., HDD or
SSD) are significantly slower than DRAM accesses, the oper-
ating system (OS) keeps frequently-accessed disk blocks in a
dedicated region of DRAM, namely the page cache. The page
cache reduces the number of disk accesses and speeds up I/O
performance. However, as data updates are first applied to the
page cache and later flushed to the storage, data modifications
may not immediately reflect in the backing storage in case of
sudden system crashes or power losses. This could cause an
on-disk file system to enter an inconsistent state [34].
Journaling: To provide consistent and recoverable updates
for metadata and/or data, kernel file systems often use jour-
naling techniques. For example, Linux Ext4 employs the jour-
naling block device version 2 (JBD2) [15], which implements
a write-ahead log to record updates to a journal area before
applying them to the corresponding file system locations.
In the event of system failures, it replays the journal to re-
store the file system to a consistent state. JBD2 operates with
three journaling modes: writeback, ordered, and data modes,
providing trade-offs between performance and consistency.
In writeback and ordered modes, only the metadata is jour-
naled. However, the ordered mode (i.e., the default option)
imposes an ordering requirement that data must be completed
before the associated metadata is committed. This ordering
constraint ensures stronger file system consistency than write-
back, albeit with increased journaling latency [36]. On the
other hand, the data mode journals both data and metadata,
offering the highest level of consistency at the expense of the
highest performance overhead.

Observation 3: Journaling places a serious impediment to
the high performance of kernel file systems and can offset the
performance benefits provided by the page cache. Figure 1
(a) and (b) show that in the ordered journal mode, the write
performance under SSD and PM drops by ∼20% compared

USENIX Association 2023 USENIX Annual Technical Conference 803

to the “no journal mode”. The “data mode” substantially
diminishes the write performance to only ∼10% of the no
journal mode for SSD and ∼30% for PM. It is because (1)
journaling requires writing metadata/data twice2: one to the
log area and one to the file system location; though journaling
is performed asynchronously, it can be frequently invoked by a
background thread, competing for system resources with user
applications. (2) JBD2 operates at the block level beneath the
file system layer, recording all modified metadata/data blocks
in a block unit within the journal area, even if only a small
portion of the metadata/data blocks is modified (i.e., the small
write case) – causing write amplification. (3) JBD2 journals
all file system updates with a single kernel thread, limiting
its scalability. In addition, the existing journaling scheme
cannot ensure instant data durability. Instead, it relies on an
explicit synchronous operation from users (e.g., fsync() or
fdatasync()) for instant data durability.

2.3 Related Work
A large body of work has been recently proposed to exploit
performance benefits and unique characteristics of fast storage
technologies. We categorize them as two groups:
PM-specialized file systems: Many PM-specialized file sys-
tems have been studied [5, 18, 19, 23, 27, 28, 40, 42, 43].
They are tailored for the fast, byte-addressable PM to ad-
dress challenges in write ordering and update atomicity, pro-
viding various levels of data/metadata consistency. For in-
stance, BPFS [19] leveraged shadow paging for metadata/data
consistency; PMFS [23] used journaling for metadata up-
date atomicity, while performing in-place update for data
(no atomicity and consistency); and NOVA [43] adopted a
per-inode log-structured file system that offers synchronous
persistence. Figure 1 (f) shows that NOVA achieves higher
performance than Ext4 with the data journal mode (i.e., EXT4-
DJ in Figure 1 (b)), while ensuring strong consistency. User-
level PM-specialized file systems have been proposed to miti-
gate the overhead of system calls: Aerie [40] implemented a
POSIX-like file system in userspace; Strata [28] appended up-
dates to a userspace per-process log; and SplitFS [27] used a
userspace library to handle data operations while still relying
on the kernel-level file system to handle metadata operations.

Observation 4: the process of adapting existing storage
systems to PM-specialized file systems remains in its early
days. Making any of those projects production-ready needs
substantial effort (and years) to achieve a combination of high
performance, strong consistency, and comprehensive data pro-
tection. In addition, PM-specialized file systems unanimously
bypass DRAM. While eliminating DRAM simplifies system
design by allowing direct access to PM and avoiding synchro-
nization complexity between PM and DRAM, it results in
sub-optimal I/O performance. For example, the read latency
of Intel Optane PM is 2x-3x higher than that of DRAM, while

2Although P2CACHE also writes metadata and data twice, it has a very
lightweight design with low overhead.

Virtual File System

Legacy Applications

Legacy Kernel File Systems

PM DRAM

System calls

Write requests Read requests

Volatile Data
Blocks

Cached
file data blocks

Page cache

Asynchronous writeback

Write
sync-up

Non-Volatile
Data Blocks

Write
Ahead

Log

File data log areaMetadata log area

Persistent
cache

Read
look-up

Read look-up

dCache

Cached
metadata

Figure 2: Overview of P2CACHE.

the write bandwidth is only 1/6 [44]. Further compounding
this situation, PM-specialized file systems usually trade I/O
performance for write atomicity and consistency, for exam-
ple, via log-structured file system techniques (cumbersome to
reads) or shadow paging (causing write amplification) [19,43].
Figure 1 (f) shows that using Copy-on-Write (CoW) in NOVA
to ensure data consistency incurs nontrivial overhead and
proves detrimental to small writes (e.g., 1 KB).
PM-enhanced file systems: A straightforward approach for
traditional block-based kernel file systems to adopt PM is to
extend them with Direct Access (DAX), such as Ext4-DAX
and XFS-DAX [5]. DAX-enabled kernel file systems bypass
the page cache and perform reads/writes directly to PM. How-
ever, DAX-enabled file systems still operate at the block level
and cannot explore PM’s byte-addressability and its perfor-
mance benefits. Figure 1 (c) shows that Ext4-DAX in the
data-order mode achieves less than 50% of the performance
of NOVA. Further, Ext4-DAX lacks support for the data jour-
nal mode and does not provide strong crash consistency.

Mostly related to P2CACHE, efforts that explored the non-
volatile nature of PM in building a cache layer have been
conducted [30, 38]. They united either the journaling and
caching [30] or the storage and caching [38] functionalities
into a single cache layer. However, they are limited due to
(1) like PM-specialized file systems, they eliminate DRAM
despite its significant performance benefits for reads; (2) they
only focus on caching data, while metadata operations remain
on the slow path. Note that metadata can take up more than
50% of file system operations [3]; (3) they remain working at
the block level (e.g., block-based CoW for data journaling or
read-modify-write for partial writes), failing to leverage the
byte-addressability of PM. Observation 5: It is vital to have an
OS caching approach that recognizes both data and metadata
and distinct characteristics between PM and DRAM.

3 P2CACHE
We introduce P2CACHE, a novel in-kernel caching mecha-
nism. The goal of P2CACHE is to enable the key properties
of PM-specialized file systems for legacy kernel file systems,
including instant data durability, strong consistency, high per-
formance, and high concurrency while requiring no modifi-
cations to user applications, libraries, and kernel file systems.
As illustrated in Figure 2, the key idea behind P2CACHE is to

804 2023 USENIX Annual Technical Conference USENIX Association

exploit a read/write-distinguishable memory hierarchy within
the tiered PM/DRAM system, where P2CACHE leverages fast
PM to serve all write requests for instant data durability and
strong crash consistency, while relying on DRAM to handle
most read I/Os for high performance. P2CACHE comprises
two key kernel components: a persistent cache (Section 3.2)
and a page cache (Section 3.3). Based on the observations in
Section 2, P2CACHE adopts the following key design choices.

3.1 Design Overview
A read/write-distinguishable memory hierarchy: We share
the same observation as [41] that the (modern) storage hi-
erarchy is not a hierarchy given the advent of fast, byte-
addressable storage like PM. Unlike a traditional hierarchy
where all I/O requests are first handled by the upper perfor-
mance layer(s) and then consumed by the lower capacity
layer(s), P2CACHE distinguishes read and write operations in
the PM/DRAM memory hierarchy with the goal to allow PM
to handle all write requests while DRAM to serve most read
I/Os because (1) P2CACHE must persist each update in PM for
instant data durability and strong crash consistency; and (2)
DRAM’s read performance is significantly higher than PM.
To achieve this, P2CACHE employs the following read/write
strategies: (1) All writes are directed to PM, with a copy of
the data modification also made in DRAM. It ensures that
both PM and DRAM have the same data version. (2) Reads
are first served from DRAM. If not found, P2CACHE searches
PM and underlying file systems. While P2CACHE writes data
to both PM and DRAM, it leverages device-level parallelism
with little performance degradation – the latency of each data
copy to DRAM is hidden by the parallel (slower) PM write.
A lightweight operation log: To harness the high perfor-
mance of PM, P2CACHE minimizes the operations in the criti-
cal path that involves PM. As shown in Figure 2, P2CACHE’s
persistent cache resides at an early I/O layer, just below the
VFS to leverage its general file system abstractions and func-
tionalities while being slim. The role of the persistent cache
is to capture all file system updates from the VFS (e.g., data
overwrites/appends and metadata updates) and quickly, atom-
ically persist them in an operation log stored in PM.
A PM-optimized logging mechanism: P2CACHE’s operation
log in PM consists of two log areas: one for metadata updates
and one for file data updates. First, P2CACHE uses fixed-sized
log entries (e.g., 64 bytes) to record metadata updates in the
metadata log area. For data updates, P2CACHE uses different
strategies: (1) For unaligned overwrites (i.e., covering one or
spanning across two partial data blocks), P2CACHE directly
appends the data to the end of its metadata update log entry
for fast persistence. (2) For aligned overwrites (i.e., cover-
ing one or multiple contiguous full data blocks), P2CACHE
allocates free data blocks in the file data log area to store
the data. (3) For data appends, P2CACHE simply stores the
appended data at the end of its data blocks in the file data
log area (allocating additional blocks, if necessary). This ap-
proach ensures data consistency by never overwriting any old

File data log areaMetadata log area

Entry
type

Write
type

Modify
time

inode
no.

File
offset

Data
length

Block
no.

File Write
Ahead Log

A 64-byte log entry (for
file and data updates)

Points to full data blocks
Log tail

Small partial writes

Directory Write
Ahead Log

Dir
ops

Parent
inode

Child
inode Timestamp Invalid Name

length Name

A 64-byte log entry (for directory updates)

Large partial writes

Figure 3: The layout of one CPU core’s PM space.
data before the commit stage and avoiding the costly CoW
operations commonly employed in other PM-based solutions.
Fast reads via in-DRAM indexes: While P2CACHE’s per-
sistent cache benefits writes, it challenges reads. For exam-
ple, a read operation may involve data scattered across var-
ious locations, and P2CACHE may even create “holes” in
the data blocks (in PM and/or DRAM) due to partial over-
writes that are not aligned with the block size. To ensure fast
reads, P2CACHE leverages in-DRAM indexes to facilitate data
search, including indexes for (1) log entries in PM’s metadata
log; (2) data blocks in PM’s file data log area; (3) data blocks
in the page cache; and (4) partial-write slots in the page cache.
These indexes enable the rapid assembly of read content, even
when it is distributed across multiple storage media. Impor-
tantly, these indexes reside exclusively in DRAM and can
be quickly reconstructed from the persistent cache, such as
during a system reboot or recovery.

3.2 Write-centric Persistent Cache
To achieve high performance, it is crucial to defer “writes” to
slow storage for as long as possible. This is precisely why
most kernel file systems employ DRAM-based caches, such
as dcache for metadata and the page cache for file data, to
expedite I/O operations. As depicted in Figure 2, P2CACHE
introduces a new OS component, a PM-based persistent cache,
positioned beneath the VFS and above any legacy kernel file
systems. It interfaces with the VFS to efficiently persist up-
dates to file system data and metadata, ensuring crash consis-
tency and quickly responding to user applications. Meanwhile,
P2CACHE relies on mature, well-tested underlying kernel file
systems for data organization and management – i.e., the per-
sisted metadata/data update operations in the persistent cache
are eventually flushed back to underlying file systems.

3.2.1 Layout of PM
Operation log: P2CACHE’s persistent cache captures and
records file system operations related to writes (i.e., meta-
data/data updates) in a PM-backed write-ahead operation log
(WAL). As illustrated in Figure 3, a WAL is implemented
as a circular buffer consisting of fixed-size log entries. As
there are two types of operations, directory operations and
file operations, P2CACHE builds two WALs: the directory
write-ahead-log (dWAL) and the file write-ahead-log (fWAL).
To improve the concurrency of P2CACHE, each CPU core has
its own WALs to log updates on that core independently.

USENIX Association 2023 USENIX Annual Technical Conference 805

VFS Interface
Directory create(), link(), unlink(), symlink(), mkdir(), rmdir(),

mknod(), update_time(), setattr(), rename()
File write(), write_iter(), fsync(), flush()

open() (access time might need to updated)

Table 1: Interface exposed by VFS for metadata/data updates.
Algorithm 1 Atomically persisting file system updates
1: function PERSISTENCE(operation)
2: log_entry := create_a_log_entry(operation);
3: if is_directory_op then
4: write_to_dWAL(log_entry);
5: else
6: write_to_fWAL(log_entry);
7: data_persistence(log_entry); //Section 3.2.3
8: end if
9: update_in_DRAM_indexes(); //Section 3.3.2

10: sfence();
11: update_log_tail();
12: sfence();
13: end function

PM space management: P2CACHE partitions the PM space
into n groups, where n is the number of CPU cores. Each
group is further divided into two main areas: the metadata
log area for storing dWALs and fWALs and the file data log
area for storing data updates, as depicted in Figure 3. In sys-
tems with multiple PM DIMMs, P2CACHE employs the inter-
leaved mode, which distributes contiguous data blocks across
the DIMMs in an interleaved manner. The management of
PM space allows P2CACHE to achieve high concurrency: (1)
P2CACHE-related tasks can be independently handled on dif-
ferent cores; (2) Sequential reads/writes can be concurrently
served by multiple PM DIMMs. While file and directory op-
erations can be processed by different cores and stored across
multiple WALs, these operations are inherently ordered by
their time of occurrence. Each operation log entry in the WAL
contains a timestamp, as depicted in Figure 3. This guarantees
that logged operations are later consumed by the underlying
file system in the exact order in which they were issued by
user applications. P2CACHE relies on the VFS to prevent con-
flicts arising from concurrent updates to the same directory
or file (via the per-inode read-write lock). For example, while
one thread is writing data to a file, all other threads attempting
to read from or write to the same file must wait. As a result,
writes to the same file are recorded sequentially across the
WALs, and their orders are determined by their timestamps.

3.2.2 Durability and Crash Consistency
Instant metadata/data durability: Using the PM-backed
operation log, P2CACHE first ensures instant data/metadata
durability. Any metadata/data updates are captured by the
persistent cache and synchronously persisted in the WALs.
P2CACHE captures these updates via the VFS-exposed inter-
face as listed in Table 1. For each update, one or more log
entries are synchronously created to store such an update oper-
ation in either the dWAL or the fWAL for metadata durability.
If the operation involves the file data update (e.g., write()),

new data should also be synchronously stored for data dura-
bility (more details in Section 3.2.3). Note that achieving in-
stant metadata/data durability in traditional kernel file systems
requires user applications to explicitly invoke synchronous
operations, such as fsync() or fdatasync(). For example,
most database systems use fsync() to ensure immediate data
durability. In contrast, with P2CACHE’s instant data durabil-
ity, (1) those fsync() issued by legacy applications can be
immediately returned; (2) P2CACHE-aware applications can
eliminate fsync(); the return of a file operation indicates
that both metadata and data have been persisted.
Strong crash consistency: P2CACHE further provides strong
crash consistency similar to PM-specialized file systems [43].
P2CACHE achieves this by ensuring that each file operation is
atomic – i.e., updates made by the operation are committed
in an all-or-none fashion. As described in Algorithm 1, for a
metadata update, P2CACHE appends the operation to the end
of the dWAL/fWAL by creating a log entry (size of 64 bytes).
Then, P2CACHE atomically updates the log tail to commit the
metadata update. For a data update, P2CACHE first appends
the operation in the fWAL. Depending on the type of the
writes (partial or full-block), P2CACHE stores the file data
either to the fWAL by creating log entries or in the file data log
area by allocating free data blocks (Section 3.2.3). Finally, the
log tail will be updated to commit the data update. Note that
as Optane PM only guarantees atomicity for an 8-byte update,
ensuring the atomicity of updates larger than 8 bytes (e.g.,
metadata/data updates) requires P2CACHE to atomically move
the log tail to the end of the dWAL/fWAL, thus committing
the update. To ensure correct write ordering and prevent the
tail update from occurring before the metadata/data update,
P2CACHE uses two sfence instructions: one after WALs or
file data are written, and one after the log tail is updated.

Compared to in-kernel file system journaling (e.g., JBD2),
which offers “relaxed” consistency, P2CACHE’s strong consis-
tency provides the following benefits: (1) Each file operation
mostly involves updating a small log entry (e.g., 64 bytes),
which is much lightweight, whereas JBD2 needs a complex
transaction operation involving multiple (4 KB) blocks, such
as a journal header, multiple descriptor blocks, and a journal
commit block. (2) Since the logs in P2CACHE are committed
to PM, they are persistent. As PM has a much larger capacity
(than DRAM), persisted data can stay for quite a long time.
Hence, P2CACHE can defer “writes” to the underlying slow
file systems and storage devices as long as possible. (3) Once
operations are asynchronously consumed by the underlying
file system, many optimizations can be employed, such as co-
alescing repeated writes and removing obsolete data, similar
to [28]. (4) As shown in Section 4, P2CACHE (though with
strong consistency) achieves much higher performance than
legacy kernel file systems (with relaxed consistency) because
P2CACHE significantly mitigates software overhead.

While P2CACHE can implement “relaxed” consistency by
placing WALs in DRAM first and asynchronously flushing

806 2023 USENIX Annual Technical Conference USENIX Association

them back to PM, its current focus lies in providing strong
(synchronous) consistency to kernel file systems. Further,
P2CACHE does not support atomic mmap, as “mmapped” I/Os
bypass the VFS and access “mmapped” files directly via
load/store instructions. Currently, P2CACHE relies on user
applications to achieve instant data durability and strong con-
sistency for mmap, while a modified (or new) mmap interface
for update atomicity is our ongoing investigation.

3.2.3 Fine-grained, Highly-efficient Data Logging
Compared to metadata, persisting data operations can incur
much higher overhead. To mitigate such overhead, P2CACHE
invents a fine-grained, highly-efficient data logging mecha-
nism that leverages PM’s byte-addressability.

To ensure consistency, one should never overwrite old data
before committing its new update. Otherwise, if a crash hap-
pens in the middle of an overwrite, it may corrupt the old
data, causing inconsistency. To consistently persist a file data
update, an intuitive approach is to allocate free data blocks in
PM for storing the new file data, record the addresses of these
blocks, and finally commit the data update. Up to this point,
the data blocks that store old data can be released. Reclaiming
these blocks can be done asynchronously (Section 3.4).

Note that if the updated file data aligns perfectly with one
or multiple block boundaries (e.g., 4 KB), no data copying
is required. In this case, the new file data blocks simply re-
place the old data blocks once the update is committed. If the
updated file data does not align with the data blocks, partial
updates are involved. Existing approaches [19, 23, 43] use a
CoW strategy to copy the old data to a new data block and
then apply the partial updates. Unfortunately, this approach
leads to write amplification and long write latency.

P2CACHE addresses this issue by decoupling (and delaying)
“copy” from “write” in a CoW operation, named decoupled
CoW. Decoupled CoW distinguishes writes of different sizes.
As depicted in Figure 3, there are two types of partial writes:
(1) For a small partial write (< 2KB, assuming a block size
of 4 KB), P2CACHE first appends the write operation log
entry to the end of the fWAL and then directly appends the
data content after the log entry. Finally, P2CACHE atomically
updates the log tail to the end of the data content to commit
the update. (2) For a large partial write (≥ 2KB and < 4KB),
P2CACHE instead allocates a free block to store the content of
the partial write. Similar to NOVA [43], P2CACHE employs a
red-black tree for tracking and allocating free blocks.

In both the aforementioned cases, P2CACHE does not copy
the old data in the write path, neither does it in the read path
– P2CACHE devises an approach to efficiently assemble dis-
tinct partial updates during reads (Section 3.3.2). P2CACHE
performs data copying to convert a partially updated block
to a full block at any later time. For instance, when reclaim-
ing space in PM (Section 3.4), P2CACHE copies small partial
writes from the fWAL to their data blocks in the file data log
area, or fills the missing portion in the data block of the large
partial write with old data. If such data blocks do not exist

1KB 16KB 256KB 4096KB
I/O size

3

4

5

6

7

8

9

IO
PS

(*
10

^6
)

Single write
(DRAM-to-PM)
Double writes
(DRAM-to-both PM/DRAM)

Figure 4: Device-level parallelism: The I/O latency of writing
data to both PM and DRAM (i.e., one sfence after two writes:
one to PM, and one to DRAM) is almost the same as that of
writing data to PM only (i.e., one sfence after each PM write).

in PM, a read-modify-write (RMW) operation is invoked to
copy the required data from the underlying file system.

The decoupled CoW approach allows P2CACHE to quickly
persist partial updates by leveraging PM’s byte-addressability.
Real-world I/O traces show that a significant number of par-
tial updates, ranging from 30% to 90% [33], commonly exist.
In addition, by distinguishing writes by their sizes, P2CACHE
ensures that it requires copying at most half a block of data
(e.g., 2KB with a block size of 4KB): P2CACHE either copies
the data of small partial writes (< 2KB) to their data blocks
or the unmodified portion of old data (< 2KB) to the data
blocks of large partial writes (> 2KB). Section 4 demonstrates
that P2CACHE, with the fine-grained data logging mecha-
nism, achieves much higher performance for small writes
than NOVA [43], a leading PM-specialized file system.

3.3 Read-centric Page Cache
P2CACHE advances the page cache to handle most read I/Os
in the tiered PM/DRAM hierarchy. P2CACHE’s page cache is
a separate implementation other than the native page cache.
It does not impact the behaviors of non-P2CACHE supported
kernel file systems, which still access the native page cache.
To allow the persistent cache and P2CACHE’s read-centric
page cache to work efficiently without comprising strong con-
sistency, P2CACHE employs a simple-and-effective inclusive
cache model to exploit device-level parallelism.

3.3.1 Inclusive Cache Model
Similar to traditional caching mechanisms, P2CACHE strives
to maximize the hit ratio of the DRAM-based page cache.
P2CACHE employs an inclusive cache model where multi-
ple copies of the same data can be stored across the tiered
memory, and the topmost layer (i.e., DRAM) always con-
tains the latest data version. It works as follows: (1) Given
a write access, it will be persisted by the persistent cache
(Section 3.2.2); meanwhile, a data copy will be made to the
page cache before committing the update in PM. In this way,
P2CACHE allows the page cache to always have the latest
version of all cached data. (2) Given a read access, P2CACHE
searches from the page cache (in DRAM), then the persistent
cache (in PM), and finally the underlying file system until

USENIX Association 2023 USENIX Annual Technical Conference 807

fWAL

Page
cache

PM

DRAM

Persistent
cache

File system

SSD/HDD

④ Index for data
blocks in PM

① Index for data
blocks in DRAM

② Index for partial
writes in DRAM

③ Index for log
entries in fWAL

Case 1 Case 2 Case 3 Case 4 Case 5

Page cache hit
read

read

Page cache miss
read

Partial cache miss

read

File data log area
read

Stale data

Latest data

Figure 5: Fast read assembling via in-DRAM indexes.

it finds the data. For a page cache miss (e.g., the first time
read or due to page eviction), the required data must be trans-
ferred either from the persistent cache or the underlying file
system to the page cache, but data are never moved from the
underlying file system to the persistent cache. (3) P2CACHE
uses LRU for cached page replacement, though other policies
also apply. Evicted (dirtied) pages are dropped because any
modifications have been recorded in the persistent cache.

Although P2CACHE involves “double writes” for each data
update, these two writes can be performed in parallel as
they target separate devices: one for PM and one for DRAM.
P2CACHE can benefit from device-level parallelism. Figure 4
shows that the bandwidth (and latency) under “double writes”
(i.e., writing to DRAM and PM at the same time) is very
close to the “single-write” case (i.e., writing to PM only),
indicating that the slower PM hides the latency of the extra
data copy to DRAM as long as these two writes overlap each
other. This way, P2CACHE trades DRAM’s bandwidth for
simple synchronization between the two caches leading to
a simplified read path. Note that DRAM has a much higher
write bandwidth than PM (e.g., 6x [44]). Similar to the native
page cache, P2CACHE’s page cache only uses “idle” DRAM
and can grow/shrink. As all data on DRAM are in sync with
PM, when the system memory pressure is high, the DRAM
used by P2CACHE can be reclaimed for other applications.

3.3.2 Fast Reads
While P2CACHE’s data logging (Section 3.2.3) greatly sharp-
ens the write path, it brings new challenges to the read path
due to: (1) While an operation log is efficient for updates,
but not anymore for searching data (in the event of a page
cache miss); (2) Decoupled CoW could leave holes in a page
cache’s data block – i.e., regions that are neither written by
applications nor fetched from PM or underlying file systems.

In-DRAM indexes: To address these challenges, P2CACHE
uses in-DRAM indexes. P2CACHE leverages Linux kernel’s
XArray – a memory-efficient, parallelizable treed data struc-
ture that performs lookups without locking – to create four per-
inode, in-DRAM indexes (Figure 5) to track ① data blocks
in the page cache; ② partial-write slots in the page cache; ③
log entries in the fWAL; and ④ data blocks in PM’s file data
log area. In consequence, in the write path, before committing

a data update, P2CACHE needs to insert the mapping informa-
tion – between the updated data range and the log entry in the
fWAL – in index ③. If a data block in the file data log area
or the page cache has been allocated, index ④ or ① should be
updated. If such an update involves a partial write, the offset
and length of the partial write should be stored in index ②.
Assembling data for reads: With these in-DRAM indexes,
the data content of a read request, specified by offset and
length, can be quickly assembled as follows:

First, P2CACHE uses the offset to query its per-inode
index ① to check whether the data has been fully cached in
the data block(s) of the page cache. If so, P2CACHE returns the
data of the requested length to user applications directly (e.g.,
case 1 in Figure 5). Otherwise, P2CACHE uses the 2-tuple key
{offset, length} to query index ② to check whether one
or more partial slots in the range of the requested data exist
in the page cache (e.g., case 4 & 5). If the aggregated partial
slots do not cover the whole requested data, P2CACHE moves
to the persistent cache for the missing slots (e.g., case 4 & 5).

P2CACHE uses the same 2-tuple key {offset, length}
to query index ③ to get all log entries belonging to the queried
data range, some of which may contain small partial writes
(e.g., case 5). Further, by providing the offset, P2CACHE
retrieves the data block(s) stored in the file data log area
via index ④ (e.g., case 2 & 4). Then, P2CACHE copies the
needed (missing) data slots – from the combined small partial
writes (from the fWAL) and large partial writes (from PM’s
data blocks) – to the page cache (e.g., case 2, 4 & 5). If,
unfortunately, there are still uncovered “holes” (e.g., case 3 &
4), P2CACHE contacts the underlying file system for reading
the needed data blocks to the page cache, taking longer time.

3.4 System Recovery and Digest
Rebuilding cache: P2CACHE updates the log tail to commit
operation-related records (Algorithm 1), indicating that all
records preceding the log tail are considered valid. In case
of a system crash or system remount, P2CACHE discards any
uncommitted records in the operation log (WALs). During
system recovery/remount, to facilitate fast reads, P2CACHE
needs to scan the logs and build (1) two in-DRAM indexes,
i.e., index ③ and index ④ (Section 3.3.2) and (2) a hash ta-
ble (i.e., dCache). The process of scanning and building is
considerably quick because logs are typically small (no data
scanning is needed) and stored in fast PM. Table 2 shows
that given a practical setup – for instance, with 10 thousand
opened directories/files and 1 million log entries (typically
multiple updates target one directory/file) – P2CACHE uses a
single core to recover index ③ within 33 ms while less than 17
ms to rebuild dCache. Moreover, the recovery of in-DRAM
indexes can be made in parallel due to the design of per-core
WALs – the time to rebuild ③ drops to 14 ms with 8 cores.
Digesting cache: P2CACHE applies cached operations in PM
to underlying file systems asynchronously via the existing I/O
interface, namely the digest process [28]. The large capacity

808 2023 USENIX Annual Technical Conference USENIX Association

of log entries/files 104 105 106 107

Rebuild dCache (ms) 16.52 95.57 904.84 8009.02
Rebuild index ③ (ms) 0.89 4.44 32.92 320.50

Table 2: Time to rebuild dCache and in-DRAM indexes.

100B 1 KB 4 KB 16 KB 64 KB 256 KB 1 MB
IO Size

10

20

30

60

90
120

Fil
l-u

p
Ti

m
e

(M
in

ut
es

)

Digestion time

Fill-up time

Figure 6: P2CACHE filling-up time: P2CACHE operates on a
512-GB PM, while the kernel file system (Ext4) runs upon
one 2-TB SSD. A (sequential) write-intensive workload from
Filebench [6] with 8 threads continuously issues I/O requests
of various sizes at maximum speed. The PM’s speed deter-
mines the cache fill-up time (the solid line), while the SSD’s
speed determines the digestion time (the dashed line). The
digest process can merge adjacent write requests in the per-
sistent cache and create large sequential I/Os writing to SSD.

of PM provides more flexibility to P2CACHE by preventing the
contention between the digest process and the normal working
process. P2CACHE digests operations during system idleness
upon two conditions: the usage of PM space is high (e.g., more
than 80%) or the number of log entries is large (e.g., more
than 10 million). During the digest process, P2CACHE relies
on the return of fsync (after each operation) to ensure that
metadata/data has been persisted and committed. A system
crash may also occur during digest; P2CACHE simply re-
applies uncommitted operations. Similar to [28], P2CACHE
applies optimizations to coalesce multiple updates to the same
file/directory during the digest process.
Filling cache: Given that (1) PM is generally faster than
the storage devices on which the underlying kernel file sys-
tems operate (e.g., HDD/SSD) and (2) the speed of the digest
process is mainly limited by the kernel file system’s storage
devices, the persistent cache of P2CACHE can reach its full
capacity. As a concrete example, Figure 6 shows the time
required to fill up the persistent cache. When the persistent
cache is full, P2CACHE’s current strategy is to throttle fore-
ground I/O threads till the digest process reclaims enough
space from PM (e.g., 20%). We note that as long as the aver-
age I/O rate is lower than the speed of the kernel file system’s
storage devices – or the fill-up time (the solid line in Figure 6)
exceeds the digestion time (the dashed line) – the digest pro-
cess can write back data timely. In practice, the occurrence
of P2CACHE reaching PM’s full capacity is expected to be
less frequent because (1) PM could be large (further CXL can
aggregate even larger PM), and (2) I/O requests in a produc-
tion environment arrive at moderate rates [38], typically lower
than the speed of the kernel file system’s storage devices.

4 Evaluation
We have implemented P2CACHE as a Linux kernel module
with ∼2000 lines of kernel code. P2CACHE is available at
https://github.com/YesZhen/P2CACHE. As an indepen-
dent kernel module, P2CACHE can be easily (un-)loaded with-
out modifying other kernel components. P2CACHE has passed
all the test cases (∼7,000) of Linux official POSIX file system
test suite [13], demonstrating P2CACHE’s POSIX compliance.

We have evaluated the effectiveness of P2CACHE. Results
from microbenchmarks demonstrate that (1) P2CACHE accel-
erates metadata operations by ∼200x against kernel file sys-
tems (e.g., Ext4 with fsync) and 3.5x against PM-specialized
file systems (e.g., NOVA). (2) P2CACHE yields much higher
write performance, particularly for small, partial writes – e.g.,
by 6.8x than NOVA and 1,000x than Ext4 (with fdatasync)
for 1 KB writes. (3) P2CACHE can leverage the DRAM-based
page cache to achieve higher read performance – by 1.5x than
NOVA. The performance benefits brought by P2CACHE fur-
ther contribute to the improved application-level performance
– e.g., by 72% to NOVA for RocksDB’s insert operations.
Experimental setup: The experiments were conducted on an
ASUS RS700-E10-RS12U server equipped, with two 12-core
Intel Xeon Gold 5317 processors (3.0 GHz and 18M Cache)
with 2 NUMA nodes each with 256 GB DRAM. Hyperthread-
ing was disabled while turbo boost was enabled. We installed
four 128 GB (totaling 512 GB) Intel Optane 200 series persis-
tent memory for each NUMA node and one 2-TB Samsung
PM883 SSD. Since our focus is not on the NUMA effect, all
experiments were conducted on one NUMA node.

We evaluated P2CACHE on the Linux kernel 5.4, compar-
ing it with (1) two kernel file systems, Ext4 and XFS, both
operating on the SSD with the default metadata journaling
mode and the data journaling mode for Ext4 (i.e., Ext4-DJ);
(2) two PM-enhanced file systems, Ext4-DAX [5] and XFS-
DAX [25], operating on PM; and (3) one PM-specialized
file system, NOVA [43] (in strict mode) also operating on
PM. We tested P2CACHE atop Ext4 as the underlying kernel
file system, though P2CACHE can run atop any kernel file
system. We evaluated P2CACHE with both microbenchmarks
and real-world applications. We have developed our own mi-
crobenchmarks to delicately generate desired I/O requests and
patterns to test various design aspects of P2CACHE. We se-
lected three representative real-world applications for testing:
Filebench [6], RocksDB [1], and MinIO [14].

4.1 Microbenchmarks
Metadata operations: We first show how P2CACHE benefits
metadata operations. We chose the six most complex ones
in Figure 1, i.e., create, link, mkdir, rename, rmdir, and
unlink. For each type of metadata, our micro-benchmark
kept issuing the operations sequentially – i.e., the subsequent
one was issued upon the completion of the previous one.

Figure 7a shows that P2CACHE significantly accelerates
the speed of all six metadata operations compared to all other
cases, except for tmpfs. For example, for the most complex

USENIX Association 2023 USENIX Annual Technical Conference 809

https://github.com/YesZhen/P2CACHE

CREATE LINK MKDIR RENAME RMDIR UNLINK0.001

0.005
0.01

0.05
0.1
0.2
0.5

1

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

TMPFS
EXT4

EXT4-DAX
EXT4-DJ

XFS
XFS-DAX

NOVA
P2CACHE

(a) Without fsync.

CREATE LINK MKDIR RENAME RMDIR UNLINK
0.001

0.005
0.01

0.05
0.1
0.2
0.5

1

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

TMPFS
EXT4

EXT4-DAX
EXT4-DJ

XFS
XFS-DAX

NOVA
P2CACHE

(b) With fsync.
Figure 7: P2CACHE significantly accelerates metadata operations as against other cases except for TMPFS.

100B 1KB 2KB 4KB 16KB 64KB0.001

0.005
0.01

0.05
0.1
0.2
0.5

1
2
4

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

(1) Append
100B 1KB 2KB

(2) Overwrite

EXT4
EXT4-DAX

EXT4-DJ
XFS

XFS-DAX
NOVA

P2CACHE

(a) Without fdatasync.

100B 1KB 2KB 4KB 16KB 64KB
0.001

0.005
0.01

0.05
0.1
0.2
0.5

1
2
4

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

(1) Append
100B 1KB 2KB

(2) Overwrite

EXT4
EXT4-DAX

EXT4-DJ
XFS

XFS-DAX
NOVA

P2CACHE

(b) With fdatasync.
Figure 8: P2CACHE accelerates data operations, especially for small, partial writes, as against other cases.

100B 1KB 2KB 4KB 16KB 64KB
0.05

0.1
0.2
0.3
0.5

1

3

7

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

EXT4
EXT4-DAX
EXT4-DJ

XFS
XFS-DAX
NOVA

P2CACHE
P2CACHE (1K holes on PM)
P2CACHE (2K holes on PM)

Figure 9: Comparisons of performance for reads.

operation rename (i.e., involving multiple inodes), P2CACHE
achieves ∼4x the performance of NOVA and Ext4 (in terms
of operations/second). It is because P2CACHE keeps the criti-
cal path (involving PM) extremely short by simply storing a
log entry that represents the rename operation in the dWAL.
In contrast, NOVA requires the creation of multiple logs and
updates to multiple log entries, while Ext4 involves more oper-
ations (i.e., first unlink and then link). As another example,
P2CACHE enhances the performance of mkdir by a factor
of 12x and 6x compared to Ext4 and Ext4-DAX. Figure 7a
also shows that the performance gap between P2CACHE and
tmpfs is narrow – tmpfs is an extremely simple kernel file

1 2 4 6 8 10 12
Thread #0.001

0.01

0.1

1
2

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

EXT4
EXT4-DAX

EXT4-DJ
XFS

XFS-DAX
NOVA

P2CACHE

Figure 10: Scalability test with 4 KB append operations.

system that works upon DRAM. P2CACHE is mostly within
80% the performance of tmpfs; P2CACHE even outperforms
tmpfs for create (1.3x) and mkdir (1.25x). The main rea-
son lies in that, instead of using the default heavyweight “in-
ode_init_always” function, P2CACHE implements its opti-
mized one by initializing (fewer) needed fields. Again, as a
caching mechanism, P2CACHE can be lighter than full-fledged
file systems, even including tmpfs.

Figure 7b shows a strong consistency scenario by issuing
fsync after each metadata operation. Note that P2CACHE
and NOVA provide strong consistency in nature; they re-
turn fsync without any action. With strong consistency, ex-

810 2023 USENIX Annual Technical Conference USENIX Association

Fileserver Webproxy Varmail

0.03
0.05

0.1

0.2

0.4

1

Op
er

at
io

ns
 p

er
 se

co
nd

(M
op

s/
Se

c)

(a) Filebench
Insert(100B) Insert(1KB) Read(100B) Read(1KB)

0.001

0.01

0.1
0.2
0.4

1
2

(b) RocksDB
Put Get Mixed

0.0004

0.001

0.002
0.003

0.005

(c) MinIO

EXT4 EXT4-DAX EXT4-DJ XFS XFS-DAX NOVA P2CACHE

Figure 11: Performance comparisons of using real-world applications (a) Filebench, (b) RocksDB, and (c) MinIO.

cept for P2CACHE, NOVA, and tmpfs, the performance of
all other approaches drops significantly, where P2CACHE out-
performs them by up to 200x. Noticeably, the performance
of P2CACHE and NOVA drops with fsync (Figure 7b) com-
pared to the case without fsync (Figure 7a). It is because the
fsync system call (though a no-op) incurs higher software
overhead. As all the approaches rely on VFS’s dCache for
caching metadata, they achieve the same performance for
read-related metadata operations (not listed).

Data operations: Next, we demonstrate how P2CACHE ben-
efits data operations. Figure 8a shows that in most cases
P2CACHE significantly outperforms other PM-based ap-
proaches in write performance – under both append (i.e.,
sequentially writing to the end of a file) and overwrite
(i.e., sequentially overwriting existing content) – due to its
lightweight design for the write path. Particularly, P2CACHE
achieves high performance for partial writes (e.g., for 100
bytes, 1 KB, and 2 KB) due to its fined-grained, highly-
efficient data logging mechanism (Section 3.2.3). For exam-
ple, the performance of append (for 1 KB) under P2CACHE
is 7.8x, 3.7x, and 3.9x as high as NOVA, Ext4-DAX, and
XFS-DAX. Note that, only P2CACHE and NOVA provide
strong consistency, while Ext4-DAX and XFS-DAX only pro-
vide metadata consistency. Even with strong consistency, in
many cases (except for the 100B case for append and 1KB
& 2KB cases for overwrite), P2CACHE achieves higher per-
formance than kernel file systems (Ext4 and XFS), where
the append and overwrite operations are directly applied to
DRAM-based page cache. It indicates that P2CACHE greatly
reduces software overhead. The reason that the 100 B append
case does not perform as well as other partial-write cases (e.g.,
1 KB and 2 KB) lies in that the I/O size of 100 bytes is not
aligned with PM’s physical media access granularity, i.e., 256
bytes, causing write amplification and inefficiency [44].

Similarly, Figure 8b shows a strong consistency scenario
by issuing fdatasync after each append or overwrite op-
eration. The performance gap between P2CACHE and others
(except NOVA) widens significantly – e.g., P2CACHE outper-
forms Ext4/XFS by more than 1,000x and Ext4-DAX/XFS-
DAX by more than 10x for small writes. The poor perfor-
mance of the kernel file systems is due to (1) slow SSD and

Metadata/data ops Initial state Steady state Steady/initial

CREATE 259,697 300,778 +15.8%
LINK 290,852 276,509 -4.9%
MKDIR 274,165 308,090 +12.4%
RENAME 273,929 250,650 -8.5%
RMDIR 422,855 376,619 -10.9%
UNLINK 544,964 513,720 -5.7%
Append (100 B) 1,417,632 1,428,365 +0.8%
Append (64 KB) 114,357 128,625 +12.5%
Overwrite (100 B) 2,266,327 2,297,884 +1.4%
Overwrite (64 KB) 118,416 132,006 +11.5%

Table 3: Performance comparisons between the initial and
steady states: metadata (Mops); data (IOPS).

(2) high overhead of file system journaling (Section 2.2).
For P2CACHE’s read performance, we tested Case 1 and 5,

as listed in Figure 5. For Case 1, where all data was cached in
the page cache, we measured the performance of sequential
reads with various I/O sizes ranging from 100 B to 64 KB. For
Case 5, where partial data was stored in DRAM and partial
data was in PM, we randomly created numerous 1 KB or 2 KB
“holes” in the data blocks of the page cache (averaging one
hole per 4 KB) and measured the performance of sequential
reads with the I/O size of 4 KB.

Figure 9 shows that, for case 1, P2CACHE achieves the
same (or slightly better) performance as (than) those which
can leverage the DRAM-based page cache, e.g., Ext4, Ext4-
DJ, and XFS. However, the difference is that P2CACHE also
provides strong consistency, while others do not. In contrast,
P2CACHE outperforms other PM-related approaches that by-
pass the page cache, e.g., by 1.5x compared to NOVA (for 4
KB reads). For case 5, P2CACHE quickly assembled each 4
KB read from both DRAM and PM (Section 3.3.2). However,
the read performance was limited by the slower device – e.g.,
PM. For example, P2CACHE achieves the same read perfor-
mance as NOVA, Ext-DAX, and XFS-DAX – the PM’s speed
limited the read performance.
Steady-state performance: We studied the steady-state
performance by first simulating a steady-state scenario of
P2CACHE through running a mix of metadata/data operations
until the persistent cache gradually reaches its 60% capacity
with around 1 million files. We then measured the perfor-
mance by running the above six metadata operations and
append/overwrite data operations with strong consistency

USENIX Association 2023 USENIX Annual Technical Conference 811

(fsync or fdatasync after each operation) and compared
the steady-state performance with that of the “initial state”,
where the persistent cache is empty. Table 3 demonstrates that
the performance variation mostly falls within 15%.
Concurrency and scalability: We measured the scalability
of P2CACHE by running an increasing number of concurrent
threads accessing different files on separate cores (up to 12 as
one NUMA node has 12 cores). The results in Figure 10 show
that both P2CACHE and NOVA scale well as the number of
threads increases until they reach the peak PM performance
(for 4 KB appends). P2CACHE achieves peak performance
much faster than NOVA due to, again, its lightweight design.
Consistency checks: We developed a consistency checker
to empirically generate test cases to examine whether the
strong consistency property provided by P2CACHE holds. The
checker added “crash points” along P2CACHE’s persistence
path (Algorithm 1) with three cases (1) inserting the crash
point before the first sfence; (2) between the two sfences;
and (3) after the second sfence. For Case 1, the operation
should not be atomically persisted as the log tail is not up-
dated; for Case 3, the operation should be persisted as the
log tail is updated; for Case 2, the operation may or may
not be persisted. The checker examines that if the operation
is persisted, the final state should match the expected state
(a priori knowledge), while if the operation is not persisted,
nothing should be recorded (i.e., none or nothing). For all the
microbenchmark tests, we also used the checker to perform
consistency checks without observing any violations. We note
that such consistency checks are incomplete and unable to
explore all possible test cases. We leave the investigation of a
more comprehensive method in future work.

4.2 Real-world Applications
Filebench: To evaluate the performance of P2CACHE with
real-world applications, we first selected three Filebench
workloads [6]: (1) a write-intensive workload, fileserver (1:2
read/write ratio); (2) a read-intensive workload, webproxy
(5:1 read/write ratio); and (3) a read/write balanced workload,
varmail (1:1 read/write ratio). For all cases, the average read
size was 1 MB, and the average write size was 16 KB. We
added another type of write with the I/O size of 1 MB for
fileserver. We fixed the thread number to 8 for all cases.

Figure 11 (a) shows that P2CACHE consistently outper-
forms other PM-based approaches (e.g., NOVA, Ext4-DAX,
and XFS-DAX), especially for read-intensive test cases, e.g.,
webproxy and varmail, due to P2CACHE’s read/write distin-
guishable memory hierarchy which leverages both PM and
DRAM. For example, P2CACHE outperforms NOVA by 60%
for webproxy and 20% for varmail. P2CACHE achieves lower
performance than Ext4 for fileserver with intensive write op-
erations, as Ext4 leverages faster DRAM-based page cache
while P2CACHE persists data in slower PM for writes. How-
ever, Ext4 does not provide strong consistency. P2CACHE
outperforms Ext4-DJ (with data journaling enabled) by 10x.
RocksDB: We then used db_bench [1] – RocksDB’s official

benchmark tool – to evaluate P2CACHE for RocksDB (a key-
value store). RocksDB’s architecture is highly concurrent for
reads but not for writes [8]. Therefore, for writes, we focused
on a single-threaded synchronous case by randomly inserting
10 million records to RocksDB; for reads, we focused on a
multi-threaded random case with 8 threads to randomly read
10 million key-value records from RocksDB. We prepared
a dataset with 10 million records. We fixed the key size to
20 bytes and evaluated two value sizes – 100 B and 1KB – a
common case in RocksDB.

Figure 11 (b) shows that P2CACHE outperforms all other
approaches for small writes (i.e., insert) – e.g., by ∼72% to
NOVA,∼33x to Ext4-DAX, and∼200x to Ext4. Note that, the
extremely poor performance of Ext4 (though using the native
page cache) is due to (1) synchronous insert operations, which
persist data on slow SSD; and (2) read-modify-write caused
by unaligned writes (e.g., 100 B or 1 KB are not aligned with 4
KB block size). As we purposely conducted the tests of reads
after insert to have all records stored in the page cache, all
the approaches (e.g., P2CACHE, Ext4, Ext4-DJ, and XFS) that
can leverage the page cache achieve the same performance –
higher than PM-based approaches that bypass DRAM.
MinIO: Last, we evaluated P2CACHE using an object stor-
age, MinIO [14]. Compared to the above applications (e.g.,
RocksDB and Filebench), MinIO’s software I/O path is much
longer with extra data management (e.g., data checksum
and placement). We used MinIO’s official benchmark tool
warp [16] with three workloads: put, get, and mixed (45%
get, 30% stat, 15% put, and 10% deletion operations). We used
log2 to distribute object sizes – i.e., objects are distributed in
equal numbers for each doubling of the size.

Figure 11(c) shows that P2CACHE and NOVA achieve the
same performance under all cases and outperform other ap-
proaches by a range between 5% (over Ext4-DAX/XFS-DAX
for get) and 10x (over Ext4/Ext4-DJ for get). We observed
that software overhead from MinIO became dominant; neither
P2CACHE nor NOVA can exploit the full capacity of PM.
5 Conclusions
We have presented P2CACHE, an in-kernel caching mecha-
nism, which harnesses performance benefits and unique char-
acteristics of fast, byte-addressable PM for legacy kernel file
systems. P2CACHE works upon a read/write-distinguishable
memory hierarchy that leverages PM to persist writes and
DRAM to handle reads, thus equipping kernel file systems
with the key properties similar to PM-specialized file sys-
tems, including instant data durability, strong consistency,
high concurrency, and high performance. Our evaluation with
both microbenchmarks and applications shows that P2CACHE
significantly increases the performance of legacy kernel file
systems, and even higher than PM-specialized file systems.
6 Acknowledgments
We thank our shepherd Mike Mesnier and the anonymous
reviewers for their helpful feedback. This work was supported
by NSF under Awards CCF-1845706 and CNS-2237966.

812 2023 USENIX Annual Technical Conference USENIX Association

References
[1] Benchmarking rocksdb. https://github.com/EighteenZi/

rocksdb_wiki/blob/master/Benchmarking-tools.md.

[2] Build ultra high-performance storage applications with the storage
performance development kit. https://spdk.io/.

[3] Ceph fs dynamic metadata management. https://docs.ceph.com/
en/latest/cephfs/dynamic-metadata-management/.

[4] Compute express link™: The breakthrough cpu-to-device inter-
connect. https://www.computeexpresslink.org/download-the-
specification.

[5] Direct access for files. "https://www.kernel.org/doc/html/
latest/filesystems/dax.html".

[6] Filebench. https://github.com/filebench/filebench.

[7] How windows ntfs finally made it into linux.
https://www.theregister.com/2021/10/13/
how_ntfs_finally_made_it/.

[8] Improving rocksdb’s write scalability counting things at smyte.
https://www.heavybit.com/library/article/improving-
rocksdbs-write-scalability-counting-things-at-smyte.

[9] Intel optane dc ssd series. https://www.intel.com/content/
www/us/en/products/details/memory-storage/data-center-
ssds/optane-dc-ssd-series.html.

[10] Intel optane dimm. https://www.intel.com/content/www/us/
en/architecture-and-technology/optane-dc-persistent-
memory.html.

[11] Intel optane is winding down. what’s that mean for you your
customers? https://www.techproviderzone.com/cloud-and-
data-centers/intel-optane-is-winding-down-what-s-
that-mean-for-you-your-customers.

[12] Intel® optane™ ssd p5800x series. https://www.intel.com/
content/www/us/en/products/docs/memory-storage/solid-
state-drives/data-center-ssds/optane-ssd-p5800x-
p5801x-brief.html.

[13] Linux posix file system test suite. https://lwn.net/Articles/
276617/.

[14] Multi-cloud object storage. https://min.io/.

[15] The Linux Journalling API. https://www.kernel.org/doc/html/
latest/filesystems/journalling.html.

[16] Warp. https://github.com/minio/warp.

[17] BJØRLING, M., AXBOE, J., NELLANS, D., AND BONNET, P. Linux
block io: Introducing multi-queue ssd access on multi-core systems. In
Proceedings of the 6th International Systems and Storage Conference
(New York, NY, USA, 2013), SYSTOR ’13, Association for Computing
Machinery.

[18] CHEN, Y., SHU, J., OU, J., AND LU, Y. Hinfs: A persistent memory
file system with both buffering and direct-access. ACM Trans. Storage
14, 1 (apr 2018).

[19] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE, B.,
BURGER, D., AND COETZEE, D. Better i/o through byte-addressable,
persistent memory. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles (New York, NY, USA, 2009),
SOSP ’09, Association for Computing Machinery, p. 133–146.

[20] CORBET, J. The multiqueue block layer. LWN.net.

[21] CORBET, J. Two new block i/o schedulers for 4.12. LWN.net.

[22] CORBET, J. The future of dax. LWN.net.

[23] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ, P.,
REDDY, D., SANKARAN, R., AND JACKSON, J. System software for
persistent memory. EuroSys ’14, Association for Computing Machin-
ery.

[24] HELLWIG, C. Xfs for linux. In Proceedings of Linux 2003 Conference
and Tutorials, Edinburgh, Scotland (2003).

[25] INTERNATIONAL., S. G. Xfs: A high-performance journaling filesys-
tem. In http://oss.sgi.com/projects/xfs.

[26] JUNG, M. Hello bytes, bye blocks: Pcie storage meets compute express
link for memory expansion (cxl-ssd). HotStorage ’22, Association for
Computing Machinery, p. 45–51.

[27] KADEKODI, R., LEE, S. K., KASHYAP, S., KIM, T., KOLLI, A., AND
CHIDAMBARAM, V. Splitfs: Reducing software overhead in file sys-
tems for persistent memory. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles (New York, NY, USA, 2019),
SOSP ’19, Association for Computing Machinery, p. 494–508.

[28] KWON, Y., FINGLER, H., HUNT, T., PETER, S., WITCHEL, E., AND
ANDERSON, T. Strata: A cross media file system. In Proceedings
of the 26th Symposium on Operating Systems Principles (New York,
NY, USA, 2017), SOSP ’17, Association for Computing Machinery,
p. 460–477.

[29] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A new file system
for flash storage. In 13th USENIX Conference on File and Storage Tech-
nologies (FAST 15) (Santa Clara, CA, Feb. 2015), USENIX Association,
pp. 273–286.

[30] LEE, E., BAHN, H., AND NOH, S. H. Unioning of the buffer cache
and journaling layers with non-volatile memory. In Proceedings of
the 11th USENIX Conference on File and Storage Technologies (USA,
2013), FAST’13, USENIX Association, p. 73–80.

[31] LI, S. block: An iops based ioscheduler. LWN.net.

[32] LIU, J., REBELLO, A., DAI, Y., YE, C., KANNAN, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Scale and per-
formance in a filesystem semi-microkernel. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (New York,
NY, USA, 2021), SOSP ’21, Association for Computing Machinery,
p. 819–835.

[33] LU, H., SALTAFORMAGGIO, B., XU, C., BELLUR, U., AND XU, D.
Bass: Improving i/o performance for cloud block storage via byte-
addressable storage stack. In Proceedings of the Seventh ACM Sympo-
sium on Cloud Computing (2016), pp. 169–181.

[34] MA, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., AND MCKUSICK, M. K. Ffsck: The fast file-system checker.
ACM Trans. Storage 10, 1 (jan 2014).

[35] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A., AND
VIVIER, L. The new ext 4 filesystem : current status and future plans.

[36] PARK, D., AND SHIN, D. iJournaling: Fine-Grained journaling for
improving the latency of fsync system call. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17) (Santa Clara, CA, July 2017),
USENIX Association, pp. 787–798.

[37] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1–32.

[38] SONG, H., KIM, S., KIM, J. H., PARK, E. J., AND NOH, S. H. First re-
sponder: Persistent memory simultaneously as high performance buffer
cache and storage. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21) (2021), pp. 839–853.

[39] VALENTE, P., AND ANDREOLINI, M. Improving application respon-
siveness with the bfq disk i/o scheduler. In Proceedings of the 5th
Annual International Systems and Storage Conference (New York, NY,
USA, 2012), SYSTOR ’12, Association for Computing Machinery.

[40] VOLOS, H., NALLI, S., PANNEERSELVAM, S., VARADARAJAN, V.,
SAXENA, P., AND SWIFT, M. M. Aerie: Flexible file-system interfaces
to storage-class memory. In Proceedings of the Ninth European Con-
ference on Computer Systems (New York, NY, USA, 2014), EuroSys
’14, Association for Computing Machinery.

USENIX Association 2023 USENIX Annual Technical Conference 813

https://github.com/EighteenZi/rocksdb_wiki/blob/master/Benchmarking-tools.md
https://github.com/EighteenZi/rocksdb_wiki/blob/master/Benchmarking-tools.md
https://spdk.io/
https://docs.ceph.com/en/latest/cephfs/dynamic-metadata-management/
https://docs.ceph.com/en/latest/cephfs/dynamic-metadata-management/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
"https://www.kernel.org/doc/html/latest/filesystems/dax.html"
"https://www.kernel.org/doc/html/latest/filesystems/dax.html"
https://github.com/filebench/filebench
https://www.theregister.com/2021/10/13/how_ntfs_finally_made_it/
https://www.theregister.com/2021/10/13/how_ntfs_finally_made_it/
https://www.heavybit.com/library/article/improving-rocksdbs-write-scalability-counting-things-at-smyte
https://www.heavybit.com/library/article/improving-rocksdbs-write-scalability-counting-things-at-smyte
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.techproviderzone.com/cloud-and-data-centers/intel-optane-is-winding-down-what-s-that-mean-for-you-your-customers
https://www.techproviderzone.com/cloud-and-data-centers/intel-optane-is-winding-down-what-s-that-mean-for-you-your-customers
https://www.techproviderzone.com/cloud-and-data-centers/intel-optane-is-winding-down-what-s-that-mean-for-you-your-customers
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/data-center-ssds/optane-ssd-p5800x-p5801x-brief.html
https://lwn.net/Articles/276617/
https://lwn.net/Articles/276617/
https://min.io/
https://www.kernel.org/doc/html/latest/filesystems/journalling.html
https://www.kernel.org/doc/html/latest/filesystems/journalling.html
https://github.com/minio/warp

[41] WU, K., GUO, Z., HU, G., TU, K., ALAGAPPAN, R., SEN, R., PARK,
K., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. The
storage hierarchy is not a hierarchy: Optimizing caching on modern
storage devices with orthus. In 19th USENIX Conference on File and
Storage Technologies (FAST 21) (2021), pp. 307–323.

[42] WU, X., QIU, S., AND NARASIMHA REDDY, A. L. Scmfs: A file
system for storage class memory and its extensions. ACM Trans.
Storage 9, 3 (aug 2013).

[43] XU, J., AND SWANSON, S. NOVA: A log-structured file system for
hybrid Volatile/Non-volatile main memories. In 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16) (Santa Clara, CA,
Feb. 2016), USENIX Association, pp. 323–338.

[44] YANG, J., KIM, J., HOSEINZADEH, M., IZRAELEVITZ, J., AND
SWANSON, S. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Stor-
age Technologies (FAST 20) (Santa Clara, CA, Feb. 2020), USENIX
Association, pp. 169–182.

[45] ZHONG, Y., LI, H., WU, Y. J., ZARKADAS, I., TAO, J., MESTER-
HAZY, E., MAKRIS, M., YANG, J., TAI, A., STUTSMAN, R., AND
CIDON, A. XRP: In-Kernel storage functions with eBPF. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22) (Carlsbad, CA, July 2022), USENIX Association, pp. 375–
393.

A Artifact Appendix

Abstract
The artifact contains the source code of P2CACHE required to
reproduce the results and figures presented in the paper. The
code is designed to work upon Intel Optane PMem 200 series.
To facilitate the reproduction of the results, we provide a col-
lection of scripts for compiling and installing P2CACHE, exe-
cuting the experiments, collecting logs, and creating graphs.
More details are available in the “README.md” file.

A.1 Description & Requirements
A.1.1 How to access

• Link: https://github.com/YesZhen/P2CACHE.git
• Artifact license: GNU GPL V3.0
• Artifact version: v0.0

A.1.2 Dependencies

For information on the hardware/software requirements
needed to run P2CACHE, please refer to “README.md”.

A.1.3 Benchmarks

The experiments are carried out using several third-party
benchmarking tools and applications, including FxMark,
Filebench, db_bench/RocksDB, and warp/MinIO.

A.2 Testbed Setup
For instructions on how to set up and configure the test ma-
chine, please refer to the “README.md” file.

A.3 Evaluation
A.3.1 Major Claims

We summarize the major claims (Cx) in the paper as follows.

• (C1): P2CACHE accelerates metadata operations, e.g., by
∼200x against kernel file systems (e.g., Ext4) and ∼3.5x
against PM-specialized file systems (e.g., NOVA).

• (C2): P2CACHE achieves much higher write performance
especially for small, partial writes, e.g., by 6.8x than NOVA
and 1,000x than Ext4 (with fdatasync) for 1 KB writes.

• (C3):P2CACHE can leverage DRAM-based page cache to
achieve high read performance, e.g., by 1.5x than NOVA.

• (C4): The performance benefits brought by P2CACHE fur-
ther contribute to improved application-level performance –
e.g., by 72% to NOVA for RocksDB’s insert.

A.3.2 Experiments

To reproduce the results presented in this paper, please refer to
the “README.md” file and follow the instructions provided
in the “Reproduce results from the paper” section.

Experiment (E1): Metadata Operations (without fsync)
Expected outcome. E1 produces the results as shown
in Figure 7a, which illustrates that P2CACHE significantly ac-
celerates the speed of all six metadata operations (i.e., create,
link, mkdir, rename, rmdir, and unlink) when compared
to all other approaches (i.e., Ext4, Ext4-DJ, XFS, Ext4-DAX,
XFS-DAX, and NOVA), except for tmpfs.

Experiment (E2): Metadata Operations (with fsync)
Expected outcome. E2 creates the results of Figure 7b. It
demonstrates a strong consistency case by issuing fsync after
each metadata operation. Except for P2CACHE, NOVA, and
tmpfs, the performance of all other approaches (i.e., Ext4,
Ext4-DJ, XFS, Ext4-DAX, XFS-DAX) drops significantly.

Experiment (E3): Write Operations (no fdatasync)
Expected outcome. E3 generates the results as depicted
in Figure 8a. It shows that in most cases (across various I/O
sizes), P2CACHE outperforms other PM-based approaches
(i.e., NOVA, Ext4-DAX, and XFS-DAX) for two write operations:
append and overwrite.

Experiment (E4): Write Operations (with fdatasync)
Expected outcome. E4 produces the results as depicted
in Figure 8b. It demonstrates a strong consistency scenario
by issuing fdatasync after each append or overwrite op-
eration. P2CACHE outperforms all other approaches in terms
of higher append and overwrite performance.

Experiment (E5): Read Operations
Expected outcome. E5 creates the results as demonstrated
in Figure 9. It shows that P2CACHE achieves the same (or
slightly better) performance as (than) those which can lever-
age the DRAM-based page cache (i.e., Ext4, Ext4-DJ, and

814 2023 USENIX Annual Technical Conference USENIX Association

https://github.com/YesZhen/P2CACHE.git

XFS). Further, P2CACHE outperforms all other PM-based ap-
proaches (i.e., NOVA, Ext4-DAX, XFS-DAX) in terms of higher
read performance.
Experiment (E6): Scalability
Expected outcome. E6 generates the results in Figure 10,
showing that both P2CACHE and NOVA scale well as the num-
ber of threads increases until reaching the peak performance,
whereas P2CACHE achieves the peak faster than NOVA.
Experiment (E7): Application: Filebench
Expected outcome. E7 produces the results as shown
in Figure 11(a). It runs three workloads with Filebench, which
are fileserver, webproxy, and varmail. The results show
that P2CACHE consistently outperforms other PM-based ap-
proaches (i.e., NOVA, Ext4-DAX, and XFS-DAX) in terms of
higher application-level performance (operations/second).
Experiment (E8): Application: RocksDB
Expected outcome. E8 creates the results in Figure 11(b). It
shows that for the insert operations (with sizes of 100 B
and 1 KB), P2CACHE outperforms all other approaches. All
the approaches (i.e., P2CACHE, Ext4, Ext4-DJ, and XFS) that
can leverage page cache achieve similar read performance –
slightly higher than other PM-based approaches that bypass
DRAM (i.e., NOVA, Ext4-DAX, and XFS-DAX).
Experiment (E9): Application: MinIO
Expected outcome. E9 produces the results in Figure 11(c).
The results show that P2CACHE and NOVA achieve the
same performance under all test cases and outperform
other approaches (e.g., Ext4, Ext4-DJ, Ext4-DAX, XFS, and
XFS-DAX).

USENIX Association 2023 USENIX Annual Technical Conference 815

	Introduction
	Motivation
	Fast Storage and Interconnect
	Kernel File Systems
	Related Work

	p2Cache
	Design Overview
	Write-centric Persistent Cache
	Layout of PM
	Durability and Crash Consistency
	Fine-grained, Highly-efficient Data Logging

	Read-centric Page Cache
	Inclusive Cache Model
	Fast Reads

	System Recovery and Digest

	Evaluation
	Microbenchmarks
	Real-world Applications

	Conclusions
	Acknowledgments
	Artifact Appendix
	Description & Requirements
	How to access
	Dependencies
	Benchmarks

	Testbed Setup
	Evaluation
	Major Claims
	Experiments

